Zend Framework 2 Documentation
Release 2.3.5

Zend Technologies Ltd.

February 18, 2015

Contents

10

Overview

Installation

2.1 Using COMPOSET .+« v v v v v e it e
2.2 Using Gitsubmodules e
23 WebServer SEtUp e e e
Getting Started with Zend Framework 2

3.1 Some assUMPLiONS . . . v v v vt u e
3.2 Thetutorial application e e e e e e e e e e e

Getting started: A skeleton application

4.1 Using the Apache Web Server L e
4.2 Using the Built-in PHP CLI Server i et
43 EITOr 1epOrting v v v i e
Modules

5.1 Settingup the Albummodule e
5.2 Configuration oL e e e e e e e e e e e e e
5.3 Informing the application about ournew module00,

Routing and controllers

Create the controller
7.1 Initialise the VIEW SCIIPLS o v v v e e e e e e e e e e e e e e e e e e

Database and models

8.1 Thedatabase e e
8.2 Themodelfiles e e e
8.3 Using ServiceManager to configure the table gateway and inject into the AlbumTable
84 Backtothecontroller e e e
8.5 Listingalbums L. e e e

Styling and Translations

Forms and actions

10.1 Addingnew albums L e e e e e e e
10.2 Editinganalbum
10.3 Deletinganalbum L e e e e e e e e e e

W W W W

2

13
13
15
15

17

19
20

21
21
21
23
25
25

29

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

10.4 Ensuring that the home page displays the list of albums

Conclusion

Introducing our first “Blog” Module
Writing a new Module

Configuring the Module

Introducing Services and the ServiceManager
What is a Service?

Writing the PostService

Weriting the required Model Files

Bringing Life into our PostService
Bringing the Service into the Controller
Writing a Factory Class

Registering Services

Using the Service at our Controller
Accessing View Variables

Summary

Preparing for different Database-Backends
What is database abstraction?

Creating the PostMapperInterface
Refactoring the PostService

The PostService has a dependency
Conclusion

Introducing Zend\Db\Sql and Zend\Stdlib\Hydrator
Preparing the Database

Quick Facts Zend\Db\Sql

Writing the mapper implementation
Refactoring hidden dependencies
Finishing the mapper

Conclusion

Understanding the Router

41

43

45

47

53

55

57

59

63

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

105

109

111

113

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Different route types

40.1 Zend\Mvc\Router\Http\Literal
40.2 Zend\Mvc\Router\Http\Segment

Different routing concepts

41.1 Genericroutes e e e e
41.2 Explicit routes using child_routes

A practical example for our Blog Module

Making use of Forms and Fieldsets

43.1 Zend\Form\Fieldset
432 Zend\Form\Form e

Creating your first Fieldset
Creating the PostForm

Adding a new Post

46.1 Creating the WriteController,

Displaying the form

Controller Logic for basically all Forms

Zend\Form and Zend\Stdlib\Hydrator working together
Conclusion

Editing and Deleting Data

Binding Objects to Forms

Adding the edit-route

Creating the edit-template

Implementing the delete functionality

Summary

Reviewing the Blog-application

57.1 Do we always need all the layers and interfaces?
57.2 Having many objects, won’t there be much code-duplication?
57.3 Why are there so many controllers?
57.4 Do you have more questions? PR them!

Getting Started with Zend Framework 2

58.1 Installation e e e e e e
582 Getting Started

A quick tour of the skeleton application

59.1 Thedispatchcycle L

The MyTaskList application

60.1 The Checklistmodule
60.2 TheModuleclass. e

115
115
116

119
119
120

123

127
127
127

129

131

133
133

139

141

149

153

155

157

159

161

163

173

175
175
175
176
176

177
177
178

183
183

61

62

63

64

65

66

67

68

69

70

71

72

73

74

The application’s pages

61.1 ROULING o o e e e e e e e e e e e
61.2 The TaskController e
61.3 Themodel e
61.4 Using Service Manager to configure the database credentials and inject into the controller

Listing tasks
62.1 Redirectthe home page e e e e

Styling

Adding new tasks
Editing a task

Deleting a task
Application Diagnostics
Step-by-step debugging
Conclusion

Zend Framework Tool (ZFTool)

70.1 Installation using COMPOSET« v v v v v v e e e e e e e e e e e e e e e e e e e
70.2 Manual installation L. e
70.3 Without installation, using the PHAR file
TOA4 Usage o o e e e e e e e

Learning Dependency Injection

71.1 Very brief introduction to Di. L e e
71.2 Simplest usage case (2 classes, one consumes theother), .
71.3 Simplest Usage Case Without Type-hints
71.4 Simplest usage case with Compiled Definition
71.5 Creating a precompiled definition for otherstouse
71.6 Using Multiple Definitions From Multiple Sources
71.7 Generating Service Locators e

Unit Testing a Zend Framework 2 application

72.1 Setting up phpunit to use composer’s autoload.php Lo oL
72.2 Settingup the tests direCtory L e e e e e
72.3 BoOtstrapping yOUr teStS v v i i e
724 Your firstcontroller test L L L
725 Afallin@ teSt CASE . . v v v v e
72.6 Configuring the service manager forthetests
72.7 Testing actions with POST o .
72.8 Testingmodel entitieso e e e e
729 Testingmodel tables L e e e e e e e e e e
7210 Conclusion e

Using the EventManager

73.1 TerminolOZY o v i i e e e e e e e e e e e e e e e e e e
732 Getting started e e e e e e e e e e e e e e e
73.3 Shared managers L. e e e e

Wildcards

191
191
192
193
196

199
201

203

205

211

215

217

219

221

223
223
223
223
224

227
227
227
229
230
232
232
233

237
237
237
238
240
241
242
243
244
246
250

251
251
251
253

255

75

76

77

78

79

80

81

82

83

84

85

Listener aggregates

75.1 Introspectingresults L. e e
75.2 Short-circuiting listener executiono Lo
753 Keepingitinorder e
75.4 Customevent ObjJects e
75.5 Putting it together: Implementing a simple caching system
75.6 Conclusion L e

Advanced Configuration Tricks

76.1 Systemconfigurationo L L
76.2 Module Configuration i e
76.3 Configuration mappingtable L L o
76.4 Configuration Priority L o
76.5 Manipulating merged configuration
76.6 Configuration merging workflow oL

Using Zend\Navigation in your Album Module

T7.1 Preparation oL e e e
77.2 Setting Up Zend\Navigation
77.3 Configuringour Site Map e
77.4 Addingthe Menu View Helper
77.5 Adding Breadcrumbs 0oL oo

Using Zend\Paginator in your Album Module

78.1 Preparation e e e
78.2 Moditying the AlbumTable
78.3 Moditying the AlbumController
78.4 Updating the View Script
78.5 Creating the Pagination Control Partial

Using the PaginationControl View Helper

Setting up a database adapter

80.1 Introduction e e e e
80.2 BasiCSCUPt i e e
80.3 Settingastaticadapter e e e e e e e e

Migration from Zend Framework 1

Namespacing Old Classes

82.1 Namespacing a ZF1 Application
82.2 HOWTO Namespace Your Models

Running Zend Framework 2 and Zend Framework 1 in parallel

83.1 UseZF2inaZFlproject. o i v i i vttt it e e e e
83.2 UseZFlinaZF2project. o v v v i it it it ettt
83.3 RunZFl andZF2together 0 v i v it i e it

Introduction to Zend\Authentication

84.1 Adapters e e
84.2 Results e
84.3 Identity Persistence o L e e e e e
844 Usage . . . v v i e e e e e

Database Table Authentication

85.1 Introduction e e

257
258
258
259
260
261
263

265
265
269
270
270
270
271

273
273
273
274
275
275

277
277
280
281
281
282

285

287
287
287
288

289

291
291
293

295
295
295
296

297
297
298
299
302

86

87

88

89

90

91

92

93

94

85.2 BasicUsage e e e e e e e e
85.3 Advanced Usage: Persisting a DbTable ResultObject.

Digest Authentication

86.1 Introduction e e e e e e e e e
86.2 Specifics e e e e e e e e
86.3 Identity L e e e e e e e e e

HTTP Authentication Adapter

87.1 Introduction e e e e e e e e e e
87.2 Design OVEIVIEW o v v ittt i e e e e e e e e e e e
87.3 Configuration Options ot i e e e e e e e e e e e e e e
87.4 ResOIVErs L o e e e e e
87.5 BasicUsage i e e e e e e e e e

LDAP Authentication

88.1 Introduction e e e e e e e
88.2 USAZE . .« v v e e e e e e e e e e e e
88.3 The APL
88.4 Server OptONS v i i e e e e e e e e e e e e e
88.5 Collecting Debugging Messages« . v v v v i i i e e e e e e e e e e e
88.6 Common Options for Specific Servers o e e

Authentication Validator
89.1 Introduction i i e e e e e e
89.2 BasicUsage e e e

Introduction to Zend\Barcode
90.1 OVEIVIEW v v o e e e e e e e e e e

Barcode creation using Zend\Barcode\Barcode class

91.1 Using Zend\Barcode\Barcode::factory o
91.2 Drawingabarcode e e e
91.3 Renderingabarcode e

Zend\Barcode Objects

02.1 Common OPtiONS v v v vttt e e e e e e e e e e e e e
92.2 Common Additional Getters e e e
92.3 Description of shipped barcodes L e e e

Zend\Barcode Renderers

93.1 Common OPtiONS . .« v v v v v e i e
93.2 Zend\Barcode\Renderer\Image e e e e
93.3 Zend\Barcode\Renderer\Pdf

Zend\Cache\Storage\Adapter

O4.1 OVerVIEW e
942 Quick Start L e e e e e e e
94.3 Basic Configuration Options e
94.4 The Storagelnterface
94.5 The AvailableSpaceCapablelnterface e
94.6 The TotalSpaceCapablelnterface i e e
94.7 The ClearByNamespacelnterface
94.8 The ClearByPrefixInterface L o
949 The ClearExpiredInterface

311
311
311
311

313
313
313
313
314
315

317
317
317
319
320
322
322

325
325
325

327
327

329
329
330
330

333
333
335
335

343
343
344
344

vi

94.10 The FlushableInterface e
94.11 The Iterablelnterface e
94.12 The Optimizablelnterface e
94.13 The Taggablelnterface e
94.14 The Apc Adapter
94.15 The Dba Adapter o o o e e e e e
94.16 The Filesystem Adapter o i i e e e e e e e e e e e e
94.17 The Memcached Adapter o i 0 i e e e e e e e
94.18 The Redis Adapter e
94.19 The Memory Adapter e
94.20 The WinCache Adapter e e
94.21 The XCache Adapter v i i e e e e e e e e e e e e e e e e e e
94.22 The ZendServerDisk Adapter e e e e e e
94.23 The ZendServerShm Adapter e
0424 Examples L. e

95 Zend\Cache\Storage\Capabilities
O05.1 OVEIVIEW o o e e e
95.2 Available Methods e
05.3 Exampleso e e e e e e e e

96 Zend\Cache\Storage\Plugin
96.1 OVEIVIEW o v ittt e e e e e e e e e e e e e e
96.2 Quick Start L e
96.3 The ClearExpiredByFactor Plugin e
96.4 The ExceptionHandler Plugin e e
96.5 The IgnoreUserAbort Plugin e
96.6 The OptimizeByFactor Plugin
96.7 The Serializer Plugin e
96.8 Available Methods L e
96.9 Examples o e e e e e e e e e e e e

97 Zend\Cache\Pattern
O7.1 OVEIVIEW . . . v o v i e e e e e e e e e e e e e e e e e e
97.2 Quick Start e e e e e
97.3 Available Methods e e e e

98 Zend\Cache\Pattern\CallbackCache
O08.1 OVEIVIEW . . . v o v o e
08.2 Quick Start e e e e e e e
98.3 Configuration Options L e
98.4 Available Methods L
08.5 Examples o i e e e e e e e e e e e e e

99 Zend\Cache\Pattern\ClassCache
90.1 OVEIVIEW . . . o o i it e e e e e e e e e e e s
99.2 Quick Start e e e e e e
99.3 Configuration OptONS v v vt v e et e e e e e e e e e e e e e e e e e e
99.4 Available Methods e
99.5 Examples e

100Zend\Cache\Pattern\ObjectCache
100.1 OVEIVIEW o o o e e e e e e e e e e e e e e e
100.2 Quick Start e e e e e e e e e
100.3 Configuration OptionS o v v vttt e e e e e e e e e e e e e

vii

100.4 Available Methods e e e e
100.5 Examples o v o o e e e e e e e e e e e e e e e e e e

101Zend\Cache\Pattern\QutputCache
TOL.T OVeIVIEW . . o o o ot ot e e e e e e e e e e e e e e e e e e
101.2 Quick Start e e e
101.3 Configuration Options o o ittt s e e e e e e e e e
101.4 Available Methods L e e e e e
101.5 Examples o o o o e e e e e e e e e

102Zend\Cache\Pattern\CaptureCache
102.1 OVEIVIEW o v o e
102.2 Quick Start L e e e e e e e
102.3 Configuration OptionS v v v v i e
102.4 Available Methods e e e e e
102.5 Examples o o o o e e e e e e e e e e e e e e

103Introduction to Zend\Captcha
T03.1 OVEIVIEW . . . o ottt e e e e e e e e e e e e e e e e e e

104Captcha Operation
104.1 The AdapterInterface o e e e e e e e
104.2 Basic Usage o v v i e e e e e e e e e e e e e e e e e e e

105CAPTCHA Adapters
105.1 Zend\Captcha\AbstractWord o e e e e e e e e
105.2 Zend\Captcha\Dumb o e e e e e e e
105.3 Zend\Captcha\Figlet e
105.4 Zend\Captcha\lmage o e e e e
105.5 Zend\Captcha\ReCaptcha e

106Introduction
106.1 Theory of Operation it ittt e e e e e e e e e

107Zend\Code\Generator Reference
107.1 Abstract Classes and Interfaces o o e e e e
107.2 Concrete CodeGenerator Classes o v v i i v i e e e e e e e e e e

108Zend\Code\Generator Examples
108.1 Generating PHP classes o . e e
108.2 Generating PHP files e
108.3 Add code to existing PHP filesand classes e

109Introduction to Zend\Config
109.1 Using Zend\Config\Config witha Reader Class
109.2 Using Zend\Config\Config with a PHP Configuration File

110Theory of Operation

111Zend\Config\Reader
111.1 Zend\Config\Reader\Ini e e e e e
111.2 Zend\Config\Reader\Xml e
111.3 Zend\Config\Reader\Json e e e e e e e e e e e
111.4 Zend\Config\Reader\Yaml e e
111.5 Zend\Config\Reader\JavaProperties e

381
381
381
381
381
382

383
383
383
384
384
385

387
387

389
389
389

391
391
392
392
392
393

395
395

399
399
400

407
407
411
412

415
415
416

417

viii

112Zend\Config\Writer

112.1 Zend\Config\Writer\Ini
112.2 Zend\Config\Write\Xml
112.3 Zend\Config\Writer\PhpArray
112.4 Zend\Config\Writer\Json
112.5 Zend\Config\Writer\Yaml

113Zend\Config\Processor

113.1 Zend\Config\Processor\Constant
113.2 Zend\Config\Processor\Filter
113.3 Zend\Config\Processor\Queue
113.4 Zend\Config\Processor\Token
113.5 Zend\Config\Processor\Translator

114The Factory

114.1 Loading configuration file
114.2 Storing configuration file

115Introduction to Zend\Console

115.1 Writing console routes
115.2 Handling console requests
115.3 Adding console usage info

116Console routes and routing

116.1 Router configuration
116.2 Basicroute
116.3 Catchallroute
116.4 Console routes cheat-sheet

117Console-aware modules

117.1 Application banner
117.2 Basicusage

118Console-aware action controllers

118.1 Handling console requests
118.2 Sending output to console

119Console adapters

119.1 Retrieving console adapter
119.2 Using console adapter

120Console prompts

120.1 Confirm
1202 Line
1203 Char
1204 Select

121ZendConsoleGetopt

121.1 Introduction

122Declaring Getopt Rules
122.1 Declaring Options with the Short Syntax
122.2 Declaring Options with the Long Syntax

425
425
426
427
428
428

431
431
431
432
432
433

435
435
435

437
437
439
440

443
443
444
448
449

451
451
453
459

461
461
463
463
465

469
469
470

473
474
474
475
476

479
479

123Fetching Options and Arguments
123.1 Handling Getopt EXCeptions o o v i i et e e e e e e e e e
123.2 Fetching Options by Name o 0 e e e e e e e e
123.3 Reporting Options o v it e e e e e e
123.4 Fetching Non-option Arguments o v v vt i i i e e e e e e

124Configuring Zend\Console\Getopt
124.1 Adding Option Rules o . o e e e e e
124.2 Adding Help Messages o o it it e e e e e
124.3 Adding Option ALIASes o v i i it e e e e e e e
124.4 Adding Argument LisSts L e e e e e e e e e e e e
124.5 Adding Configuration i e e e e e e e e e e e e

125Introduction to Zend\Crypt
126Encrypt/decrypt using block ciphers

127Key derivation function
127.1 Pbkdf2 adapter L e e
127.2 SaltedS2k adapter e e e e e e e e e
127.3 Scryptadapter oo e e e e e e e e e e

128Password
128.1 Berypt . . o o o e e e e e e e e e e
128.2 Apache L e e e

129Public key cryptography
129.1 Diffie-Hellman e e e e e e e e e e e e e e
129.2 RSA . e e

130Zend\Db\Adapter
130.1 Creating an Adapter - Quickstart L
130.2 Creating an Adapter Using Dependency Injection
130.3 Query Preparation Through Zend\Db\Adapter\Adapter::query()
130.4 Query Execution Through Zend\Db\Adapter\Adapter::query()
130.5 Creating Statements o o it e e e e e e e e e e e e e e e e e e
130.6 Using the Driver Object o o e e
130.7 Using The Platform Object e e
130.8 Using The Parameter Container 0 v i i v it et et e e e e
130.9 Examples oo e e e e e e e e e e e e e

131Zend\Db\ResultSet
131.1 Quickstart e e e e e e e e
131.2 Zend\Db\ResultSet\ResultSet and Zend\Db\ResultSet\AbstractResultSet
131.3 Zend\Db\ResultSet\HydratingResultSet

132Z.end\Db\Sql
132.1 Zend\Db\SqI\Sql (Quickstart) e
132.2 Zend\Db\Sql’s Select, Insert, Update and Delete
132.3 Zend\Db\SqI\Select L e e e
132.4 Zend\Db\SqI\Insert L e e e e e
132.5 Zend\Db\SqI\Update o e e e e e e e e
132.6 Zend\Db\Sql\Delete o e e e e e e e e
132.7 Zend\Db\SqI\Where & Zend\Db\Sql\Having

483
483
484
484
484

487
487
487
488
488
489

491

493

133Zend\Db\SqI\Dd1
133.1 Creating Tables
133.2 Altering Tables
133.3 Dropping Tables
133.4 Executing DDL Statements
133.5 Currently Supported Data Types . . .
133.6 Currently Supported Constraint Types

134Zend\Db\TableGateway
134.1 BasicUsage
134.2 TableGateway Features

135Zend\Db\RowGateway
135.1 Quickstart
135.2 ActiveRecord Style Objects

136Zend\Db\Metadata
136.1 BasicUsage

137Dumping Variables
137.1 Example of dump() method

138Introduction to Zend\Di
138.1 Dependency Injection
138.2 Dependency Injection Containers . .

139Zend\Di Quickstart

140Zend\Di Definition
140.1 DefinitionList
140.2 RuntimeDefinition
140.3 CompilerDefinition
140.4 ClassDefinition

141Zend\Di InstanceManager
141.1 Parameters
141.2 Preferences
141.3 Aliases

142Zend\Di Configuration

143Zend\Di Debugging & Complex Use Cases
143.1 DebuggingaDiC
143.2 Complex Use Cases

144Introduction to Zend\Dom

145Z.end\Dom\Query

145.1 Theory of Operation i o i e e e e e e e e e e
145.2 Methods Available e

146Introduction to Zend\Escaper

146.1 OVErVIEW L i i e e e e
146.2 What Zend\Escaper iSnot i it e e e e e e e

533
533
534
534
534
535
535

537
537
539

541
541
542

543
543

547
547

549
549
549

551

555
555
555
556
557

559
559
560
561

563

565
565
565

569

xi

147Theory of Operation 577

147.1 The Problem with Inconsistent Functionality 577
147.2 Why Contextual Escaping? o 0 e e e e e e 578
148Configuring Zend\Escaper 581
149Escaping HTML 583
149.1 Examples of Bad HTML Escaping o 0 0ttt e et e 583
149.2 Examples of Good HTML Escaping i i it et e e e e e e e e 584
150Escaping HTML Attributes 585
150.1 Examples of Bad HTML Attribute Escaping 585
150.2 Examples of Good HTML Attribute Escaping i, 586
151Escaping Javascript 589
151.1 Examples of Bad Javascript Escaping 589
151.2 Examples of Good Javascript Escaping e 590
152Escaping Cascading Style Sheets 591
152.1 Examples of Bad CSS Escaping o o it e e 591
152.2 Examples of Good CSS Escaping 0 0 i i i i e e e e e 591
153Escaping URLSs 593
153.1 Examples of Bad URL Escaping 0 i i i i et et e e e e e e 593
153.2 Examples of Good URL Escaping o v i i it et e e e e e e 593
154The EventManager 595
IS4.1 OVEeIVIEW . . o o ot e e e e e e e e e e e e e e e e e e 595
1542 Quick Start L e e e e e e e 595
154.3 Configuration Options ottt e e e e e 599
154.4 Available Methods L e e e e e e e e e e e 599
1545 Examples o o e e e e 600
155Introduction to Zend\Feed 605
155.1 Reading RSS Feed Data 605
156Importing Feeds 607
156.1 Dumping the contents of afeed L 607
157Retrieving Feeds from Web Pages 609
157.1 Find Feed Links 0 . . 0 e e e e e e e 609
158Consuming an RSS Feed 611
158.1 Reading afeed e e e e 611
158.2 Get PIrOPEItieS . . v v v v v v e 611
159Consuming an Atom Feed 613
159.1 Basic Useof an Atom Feed 613
160Consuming a Single Atom Entry 615
160.1 Reading a Single-Entry Atom Feed o 615
161Zend\Feed and Security 617
161.1 Introduction e e e e e e e e 617
161.2 Filtering data using HTMLPurifier e 617
161.3 Escaping data using Zend\Escaper L e 619

xii

162Zend\Feed\Reader\Reader 621

162.1 Introduction e e e e e e e e e e 621
162.2 Importing Feeds o . L e e 621
162.3 Retrieving Underlying Feed and Entry Sources 622
162.4 Cache Support and Intelligent Requests 623
162.5 Locating Feed URIs from Websites ittt 624
162.6 Attribute Collections L . e e e e e e e 625
162.7 Retrieving Feed Information 625
162.8 Retrieving Entry/Item Information oL 628
1629 Extending Feed and Entry APIs L o 630
163Zend\Feed\Writer\Writer 635
163.1 Introduction L e e e e e e e e e e e e e 635
163.2 Architecture L e e e e e e e e e e e e 635
163.3 Getting Started L e e e e e 636
163.4 Setting Feed Data Points e e e e e e e e 638
163.5 Setting Entry Data Points e e e e 640
164Zend\Feed\PubSubHubbub 643
164.1 What is PubSubHubbub? e 643
164.2 Architecture o o e e e e e e e e e e e e e e 643
164.3 Zend\Feed\PubSubHubbub\Publisher 644
164.4 Zend\Feed\PubSubHubbub\Subscriber 645
165Zend\File\ClassFileLocator 651
165.1 OVEIVIEW o o o e e e e e e e e e e e e e e 651
165.2 Available Methods L e e 651
1653 Examples o o o e e e e e e e e 651
166Introduction to Zend\Filter 653
166.1 Whatis afilter? L e e e e e 653
166.2 Basicusage of filters e e e e e e e e e e 653
166.3 Using the StaticFilter o e e e e e e 654
166.4 Double filtering o o e e e e e e e e e e e e 654
167Standard Filter Classes 657
I67.1 Alnum o e e e e e e 657
167.2 Alpha 658
167.3 BaseName L e e e e e e e e e e 658
167.4 Boolean e e e e e e e e 659
167.5 Callback e e 662
167.6 Compress and Decompress v v v v v it e e e e e e e e e e e e e e e e e 663
167.7 Digits . . . o o e e e e e e e e 668
TO7.8 DIr . . o o o o e e e e e e 669
167.9 Encryptand Decrypt e 669
167.10HtMIENGLEes o o o e e e e e e 675
TOT.1TNt . « . o o o e e e e e 677
TOTA2NUIL . . . o e e e 677
167.13NumberFormat L e e e e e e e e 679
167.14PregReplace L e 679
167.15RealPath e e 680
167.165tringTOLOWET o o e e e e e e e e e e e e e e e e 681
167.178tringToUpPper o o o e e e e e e e e e e e e e e e 682
LTO67.08StringTrim o o e e e e e e e e e e 682
167.18tripNewlines L e 683

xiii

T67.205trIpTagS . . o o v o o e
167.21U0riNormalize e e e e e e e e e e

168Word Filters

168.1 CamelCaseToDash L e e
168.2 CamelCaseToSeparator o v v i i et e e e e e e e e e e e
168.3 CamelCaseToUnderscore v v v v i v ittt e e et e e e e e e e e
168.4 DashToCamelCase i i i e e e e e e e e e e e e e e e e e
168.5 DashToSeparator o o e e e e e e e e e e
168.6 DashToUNnderscore v v i v i e
168.7 SeparatorToCamelCase o i i e e e e e e e e e
168.8 SeparatorToDash L e e e e e
168.9 SeparatorToSeparator L e
168.10UnderscoreToCamelCase o o i i i it e e e e e e e e e e e
168.11UnderscoreToSeparator ottt e e e e e e e e
168.12UnderscoreToDash L L e

169File Filter Classes

169.1 DeCrypt . . . o o o o e e e e e e e
169.2 ENCIYPL . . o o o o e
1693 LOWEICASE . . . o v v vttt et i e e e e
1694 Rename e e e e
169.5 RenameUpload e
169.6 UPPEICase v v v i it e e e e e e e e e e e e e

170Filter Chains

170.1 Setting Filter Chain Order i e e e e
170.2 Using the Plugin Manager i i e e e

171Zend\Filter\Inflector

171.1 Transforming MixedCase and camelCaseText to another format

171.2 Static Rules

171.3 Filter Inflector Rules e e e

171.4 Setting Many Rules
171.5 Example

172Using the StaticFilter

173Writing Filters
173.1 Example

174Introduction

175Quick Start
175.1 Programmatic Form
175.2 Creation via Factory

AtONCEe e e e e e e e

Creation v v e e e e e e e e e e

175.3 Factory-backed Form Extension 0 i i e e e e e

175.4 Validating Forms .

175.5 Hinting tothe Input Filter

175.6 Binding an object .
175.7 Rendering
175.8 Validation Groups
175.9 Using Annotations

176Form Collections

687
687
687
688
688
689
689
690
690
691
692
692
693

695
695
695
695
695
697
699

701
701
701

703
703
705
706
706
708

709

711
711

713

715
715
716
720
721
722
724
725
728
729

733

xiv

176.1 Creating Fieldsets i i i e e e e e e e e e e e e e
176.2 The Form Element e
176.3 The Controller e e
176.4 The VIiew e e e
176.5 Adding New Elements Dynamically
176.6 Validation groups for fieldsets and collection Lo

177File Uploading
177.1 Standard Exampleo e e e e
177.2 File Post-Redirect-Get Plugin
177.3 HTMLS Multi-File Uploads o 0 o e e e e e e e e e e e e
177.4 Upload Progress o o i i e e e e e e e e e e e e e e e e
177.5 Additional Info L e e e

178Advanced use of forms
I78.1 Shortnames o e e e e e e e e e
178.2 Creating custom elements L e e e e e e e e e e e e
178.3 Handling dependencies o i e e e e
178.4 The specific case of initializers o 0 v i e e e e e e e e e e e

179Form Elements
179.1 Introduction e e e e e
179.2 Element Base Class o i e e e e e
179.3 Standard Elements e e e e e e e
1794 HTMLS Elements e e e e e e e e e e e e e

180Form View Helpers
180.1 Introduction e e e
180.2 Standard Helpers e
180.3 HTMLS Helpers o . o e e e e e e e e e e e e
180.4 File Upload Progress Helpers ittt

181Zend\Http
I8L.1 OVErVIEW L o i e e e e
181.2 Zend\Http Request, Response and Headers

182The Request Class
182.1 OVEIVIEW o v ot e e e e e e e e e e e e e e e e e e e
1822 Quick Start L e e e e e e e
182.3 Configuration OPONS v v v v i et e e e e e e e e e e e e e e e e e e e
182.4 Available Methods L e e e e e
182.5 Examples o o o e e e e e e e e e e e e

183The Response Class
I83.1 OVEIVIEW o o i it e e e e e e e e e e e
183.2 Quick Start e e e e e e
183.3 Configuration Options o o i i e e e e e e e e e e e e e e e e
183.4 Available Methods o e e e e e e e e e
183.5 EXamples o o e e e e e e e e e e e e e

184The Headers Class
184.1 OVErVIEW o o e e e e e e e e e e e e
184.2 Quick Start e e e
184.3 Configuration OpPtONS Lt i vt et et e e e e e e e e e e e e e e e e
184.4 Available Methods e e

749
749
752
754
755
759

761
761
761
765
767

769
769
769
771
788

803
803
803
817
823

825
825
825

827
827
827
828
828
831

833
833
833
834
834
836

XV

184.5 Zend\Http\Header\HeaderInterface Methods
184.6 Zend\Http\Header\AbstractAccept Methods
184.7 Zend\Http\Header\AbstractDate Methods
184.8 Zend\Http\Header\AbstractLocation Methods
184.9 List of HTTP Header Types o o i i it e e e e e e e e e e
I84.10EXamples o o v e e e e e e e e e e

185HTTP Client

185.1 OVEIVIEW . . . o o o ot e
185.2 Quick Start e e e e e e e
185.3 Configuration ot i e e e e e e e e e e e e e e
185.4 Examples o o e e e e e e e e e e e e e e

186HTTP Client - Connection Adapters

I86.1 OVEIVIEW o v ot e e e e e e e e e e e e e e e e
186.2 The Socket Adapter e e
186.3 The Proxy Adapter o o e e e e e e e
186.4 The cURL Adapter o o e e e e e e e e e
186.5 The Test Adapter o o i i e
186.6 Creating your own connection adapters v v v v v it e e e e e e e e e

187HTTP Client - Advanced Usage

187.1 HTTP Redirections o o i ittt e e et e e e e e e e e e e e e
187.2 Adding Cookies and Using Cookie Persistence
187.3 Setting Custom Request Headers
187.4 File Uploads e
187.5 Sending Raw POST Data e
187.6 HTTP Authentication i i v ittt et e e e e e e
187.7 Sending Multiple Requests With the Same Client
187.8 Data Streaming i i e e e e e e e e e e e e e e e e e e e

188HTTP Client - Static Usage

I88.1 Overview L
188.2 Quick Start e e e e e
188.3 Configuration Options o ot e e e e e e e
188.4 Available Methods

189Translating

189.1 Adding translations L e e e
189.2 Supported formats L e e e e e
189.3 Settingalocale L e e
189.4 Translating MEeSSAZES « .+ « v v v v v v e
189.5 Caching o o e e e e e e

190118n View Helpers

190.1 Introduction L e e e
190.2 CurrencyFormat Helper e
190.3 DateFormat Helper e
190.4 NumberFormat Helper e
190.5 Plural Helper o o e e e e e e e e e e e e e e e
190.6 Translate Helper o e e e e e e
190.7 TranslatePlural Helper o . . o e e e
190.8 Abstract Translator Helper

191118n Filters

851
851
851
852
853

857
857
857
860
861
862
864

867
867
867
868
869
870
871
871
872

875
875
875
875
876

877
877
878
878
878
878

879
879
879
881
882
884
885
886
887

889

XVi

191.1 Alnum e e e e e e e e s
191.2 Alpha e e e e e e e e e
191.3 NumberFormat e e e e e e
191.4 NumberParse e e e e e

192118n Validators

193Float
193.1 Supported options for Zend\[18n\Validator\Float
193.2 Simple float validation o . L e e e e e e e e e e
193.3 Localized float validation L e e e e
1934 Int. o e e

194Introduction

195File Upload Input
195.1 Basic Usage o v i e e e e e e e e e e e e e e e e

196Introduction

197Basic Usage
197.1 Pretty-printing JSON L e

198Advanced Usage
198.1 JISON ODJECtS . . . v v vt o e e e e e e e e e e e e e e e e
198.2 Encoding PHP objects e
198.3 Internal Encoder/Decoder e e e e e e e e e e e e
198.4 JSON EXPIessions . . . v v v v v v v v i e

199XML to JSON conversion
199.1 Example o o e e e e e e e e e e e e e e e

200Zend\Json\Server - JSON-RPC server
200.1 Introduction e e e e
200.2 Basic USage v v v i e
200.3 Advanced Details L e

201Introduction to Zend\Ldap
201.1 Theory of Operation v v i i e

202API overview
202.1 Configuration / OPHONS« « v v vt e e e e e e e e e e e e e e e e e e
202.2 APIReference e e e

203Zend\Ldap\Ldap
203.1 Zend\Ldap\Collection o i e e e e e e e e e e

204Zend\Ldap\Attribute
205Zend\Ldap\Converter\Converter
206Zend\LLdap\Dn
207Zend\Ldap\Filter

208Zend\L.dap\Node

893

895
895
895
895
896

897

901
901

903

905
905

9207
907
907
908
908

909
909

911
911
911
913

919
919

923
923
924

927
928

929

931

933

937

941

xvii

209Zend\Ldap\Node\RootDse
209.1 OpenLLDAP o o e e e e e e e e
209.2 ActiveDIrectory oo e e e e e e e e
2003 eDIrectory e e e e e

210Zend\L.dap\Node\Schema
210.1 OpenLLDAP o o e e e e e
210.2 ActiveDIrectory o o i e e e e e e e e e e e e e e e e e e

211Zend\Ldap\Ldif\Encoder

212Usage Scenarios
212.1 Authentication SCENATIOS« . v v v v v vt it e e e e e e e e e e e e e e e e
212.2 Basic CRUD 0perations v v v v vt i it e i e e e e e e e e e e e e e e
212.3 Extended Operationso e e e e e e

213Tools
213.1 Creation and modification of DN strings e
213.2 Using the filter API to create search filters
213.3 Modify LDAP entries using the Attribute APL

2140bject-oriented access to the LDAP tree using Zend\L.dap\Node
214.1 Basic CRUD operations o o v i ittt e it e et e e e e e e e
214.2 Extended Operations L. e e e e e e e e e e
2143 Tree traversal oL e e e e e

215Getting information from the LDAP server
2151 RootDSE
215.2 Schema Browsing e e e e e e e e e e e e e

216Serializing LDAP data to and from LDIF
216.1 Serializea LDAPentry to LDIF e
216.2 Deserialize a LDIF string intoa LDAPentry o .

217The AutoloaderFactory
2171 OVEIVIBW . . o v vt o et e
217.2 Quick Start e e e e e e e
217.3 Configuration OptONS 0 vt i e
217.4 Available Methods L e e e e e
217.5 Examples o o o e e e e e e e e e e e

218The StandardAutoloader
218.1 OVEIVIEW . . . v o v o e e e e e e e e e e e e e e e e e e e
2182 Quick Starto e
218.3 Configuration Options v v v v vttt e e e e e e e
218.4 Available Methods L e e
218.5 Examples o e e e e e e e e e e e e e

219The ClassMapAutoloader
219.1 OVEIVIEW . . . v vttt e e e e e e e e e e e e e e e e
2192 Quick Start e e e e e e e e
219.3 Configuration Options o it e e e e e e
219.4 Available Methods L e
2195 Examples o oL e e e

943
945
945
946

949
951
952

953

955
955
955
957

959
959
959
959

961
961
961
961

963
963
963

965
965
966

969
969
969
970
970
970

971
971
972
973
973
974

Xviii

220The ModuleAutoloader
220.1 OVEIVIEW . . . v v v o e e e e e e e e e e e e e e e e
220.2 Quickstart L e e e e e e e e e e e
220.3 Configuration Options ottt e e e e e
220.4 Available Methods L e
220.5 Examples oo e e e e e

221The SplAutoloader Interface
2211 OVEIVIEW . o o v v v it e e e e e e e e e e e e e e e e
221.2 Quick Start e e e e e e e e e e e e e e
221.3 Configuration OPtions o v v vttt e e e e e e e e e e e e e
221.4 Available Methods L L e e e e e e e
2215 Examples o oo e e e e

222The PluginClassLoader
2221 OVEIVIEW . . . o o e e e e e
2222 Quick Start L e e e e e e e
222.3 Configuration OptionS v vt vttt i e e e e e e e e e e e e
222.4 Available Methods L e
2225 EXamples . . . oo e e e e e e

223The ShortNameLocator Interface
223.1 OVEIVIEW . . . v o v o e e e e e e e e e e e e e e e e e e
2232 Quick Start e e e e e e e e
223.3 Configuration Options ittt e e e e e e e e
223.4 Available Methods e e e e
2235 Bxampleso e e e e e e e e e e e e

224The PluginClassLocator interface
2241 OVEIVIEW . . o v v vttt e e e it e e e e e e e e e e e e e e
2242 Quick Start e
2243 Configuration OPtionS v v v v vttt e e e e e e e e e e
224.4 Available Methods L e e e
2245 Exampleso L e e e e e e

225The Class Map Generator utility: bin/classmap_generator.php
2251 OVeIVIEW . . . o o o e e e
2252 Quick Start
225.3 Configuration OptonS L v vt it e e e e e e e e e e e e e e e e e

226Zend\Log
226.1 OVEIVIEW L e
226.2 CreatingaLog o o e e e e e
226.3 Logging MESSages v v v i i e e e e e e e e e e e e e e e
226.4 Destroying aog e e e e e e e e e e e e
226.5 Using Built-in Priorities o e e e e e e e e e e e
226.6 Understanding Log Events L e
226.7 Log PHP Errors o o o e e e e e e e e

227Writers
227.1 Writing to Streams« o o v vt e e e e e e e e e e e e e e e e e
227.2 Writing to Databases e e e e e e e
2273 Writingto FirePHP 0 oL e
227.4 Stubbing Outthe Writer o e e e e e e e e e e e e e e
227.5 Testing withthe Mock o e e e e e e

979
979
979
979
979
980

981
981
981
982
982
983

985
985
985
986
986
987

991
991
991
991
992
992

993
993
993
993
993
994

995
995
995
995

997
997
997
998
998
998
999
999

1001
1001
1002
1002
1003
1003

Xix

227.6 Compositing Writers v v v v v e

228Filters

228.1 OVEIVIEW . . v v v o o e e e e e e e e e e e e
228.2 Availablefilters

229Formatters

229.1 Simple Formatting
229.2 Formattingto XML
229.3 FormattingtoFirePhp

230Introduction to Zend\Mail

230.1 Getting started e
230.2 Configuring the default sendmail transport

231Zend\Mail\Message

2311 Overview
2312 Quick Start
231.3 Configuration Options
231.4 Available Methods
2315 Examples oL

232Zend\Mail\Transport

2321 OVEIVIEW . . . v v o e e e e e e e e e e e e e e e e e
2322 Quick Start e
232.3 Configuration Options o v vt vt
232.4 Available Methods oo
2325 Exampleso o

233Zend\Mail\Transport\SmtpOptions

2331 OVEIVIEW . . . o o v vt s e e e e e
2332 Quick Start L
233.3 Configuration Options oot v it
233.4 Available Methods o
2335 Examples e e

2347 end\Mail\Transport\FileOptions

2341 OVerview o e e
2342 Quick Start L
234.3 Configuration Options
234.4 Available Methods L L oo
2345 Exampleso Lo e

235Introduction to Zend\Math

235.1 Random number generator
2352 Bigintegers e e e e e

2360verview

236.1 Introduction
236.2 Theory of Operation

237Memory Manager

237.1 Creating a Memory Manager.
237.2 Managing Memory Objects
237.3 Memory Manager Settings ot e e e

XX

238Memory Objects
238.1 Movable
2382 Locked
238.3 Memory container ‘value’ property oot e e e
238.4 Memory container interface oL Lo L e e e e e e e

239Z.end\Mime
2390.1 Introduction e e e e e e e e e e e e e
239.2 Static Methods and Constants e e
239.3 Instantiating Zend\Mimeo e e e e e e e e

240Zend\Mime\Message
240.1 Introduction e e e e e e e e e e
240.2 Instantiation Lo Lo e e e e e e e e e e e e
240.3 Adding MIME Parts e e e e e e e
240.4 Boundary handling e
240.5 Parsing a string to create a Zend\Mime\Message object oL
240.6 Available methods L

241Z.end\Mime\Part
241.1 Introduction e e e e e e e e e e e e e e e
241.2 Instantiation e e e e e e e e e
241.3 Methods for rendering the message part to a string v v v vt i e e e
241.4 Available methods e e

242Introduction to the Module System
242.1 The autoload_*.php Files o 0 e e e e e e e e

243The Module Manager
243.1 Module Manager Events e
243.2 Module Manager LiSteners o vt i e e e e e e e e e e e e e e e

244The Module Class
244.1 AMinimal Module L
2442 A Typical Module Class o i e e e
244.3 The “loadModules.post” Event L e e e e e
244.4 The MVC “bootstrap” Event e

245The Module Autoloader
245.1 Module Autoloader Usage o e e e
245.2 Non-Standard / Explicit Module Paths L
245.3 Packaging Modules with Phar

246Best Practices when Creating Modules
246.1 Keep the init () and onBootstrap () methods lightweight
246.2 Do not perform writes withinamodule Lo
246.3 Utilize a vendor prefix for module names o
246.4 Utilize a module prefix for service names el e e

247Introduction to the MVC Layer
247.1 Basic Application StrUCIUIE v v v v e
247.2 Basic Module Structure L. L e e e e e e
247.3 Bootstrapping an Application oL e e e
247.4 Bootstrapping a Modular Application Lo e
247.5 Conclusiont e e e e

XXi

248Quick Start
248.1 Install the Zend Skeleton Application o o i i e e e e e
248.2 Create a New Module L . e e e e
248.3 Update the Module Class o e
248.4 Create aController o L e e e e e e e e
248.5 Create a VIEW SCIIPE o o v v v it e e e e e e e e e e e e
248.6 View scripts for module names with subnamespaces oo
24877 Create aRoute e e e
248.8 Tell the Application Aboutour Module
2489 Testit Out! L . e e e e

249Default Services
249.1 Theory of Operation i i it e e e e e e
249.2 ServiceManager i e e e e e e e e e e e e e e
249.3 Abstract Factories L e e
249.4 Plugin Managers v v v v vt e
249.5 VIeWMaAnager v v vt e
249.6 Application Configuration Options e
249.7 Default Configuration Options o it

250Routing
250.1 Router Types o o o e e e e
250.2 HTTP Route TYPES o o o i i et e
250.3 HTTP Routing Examples o o e e
250.4 Console Route TYPES v v v v v i e e e e e e e e e e e e e e e e e e

251The MvcEvent
251.1 Orderof events o e s
251.2 MvcEvent::EVENT_BOOTSTRAP e e
251.3 MvcEvent::EVENT_ROUTE e e e e
251.4 MvcEvent::EVENT_DISPATCH e e et
251.5 MvcEvent::EVENT_DISPATCH_ERROR
251.6 MvcEvent::EVENT _RENDER e
251.7 MvcEvent::EVENT_RENDER_ERROR
251.8 MvcEvent::EVENT_FINISH e e e e e

252The SendResponseEvent
2521 LASEENEIS . . o o v v ot e
2522 TIIGEETETS . v v v v v e

253Available Controllers
253.1 Common Interfaces Used With Controllers
253.2 The AbstractActionController e e
253.3 The AbstractRestfulController e e e e e

254Controller Plugins
254.1 AcceptableViewModelSelector Plugin o
254.2 FlashMessenger Plugin o e e e e
2543 Forward Plugin e
254.4 Tdentity Plugin o e
254.5 Layout Plugin o o . e e e e e e e e e e e e
254.6 Params Plugin L e e e e e e e e e
254.7 Post/Redirect/Get Plugin L e
254.8 File Post/Redirect/Get Plugin L e
2549 Redirect Plugin o e e

xxii

2541001 Plugin o e e e e e e e e e e e e e e e e 1131

255Examples 1133
255.1 Controllers L L e e e e e 1133
255.2 BOOLSIAPPING . . v v v v o e 1134

256Introduction to Zend\Navigation 1135
256.1 Pages and CONtAINeTS v v v vt vt ettt e e e e e e e e e e e e e 1135
256.2 View Helpers o o e e e e e e e e e e 1135

257Quick Start 1137

258Pages 1139
258.1 Common page features L e e e e e e e 1139
258.2 Zend\Navigation\Page\MVe e e e 1141
258.3 Zend\Navigation\Page\Uri o i e e e e e e e e e e 1144
258.4 Creating custom PaAge tYPES « « « v v v v v v e 1144
258.5 Creating pages using the page factory L e 1145

259Containers 1149
259.1 Creating CONAINETS .+ « . v v v v v v v e 1149
259.2 Adding pages e e e e e e e e e e e e e 1155
2593 RemOVING PAZES e e e e e e e e e e e e e 1156
259.4 FINdINg PAgeS . « « v v v v e e e e e e e e e e 1157
259.5 Tterating CONtaAINerS ¢ v v v v v v e 1159
259.6 Other Operations v v v v v e i e e e e e e e e e e e e e e e e e e 1159

260View Helpers 1163
260.1 Introduction e e 1163
260.2 Translation of labels and titles e 1164
260.3 Integration with ACL e e 1164
260.4 Navigation setup used inexamples 0oL o e 1165

261View Helper - Breadcrumbs 1171
261.1 Introduction e e e e 1171
201.2 BaSICUSAZE .« . v v v v v e 1171
261.3 Specifying indentationl e e e e e e e e 1172
261.4 CustomizZe OULPUL .+« v v v v vt o e 1172
261.5 Rendering using a partial VIew SCTIPt v v v v v i e e e e e e e e e e e e e 1172

262View Helper - Links 1175
262.1 Introduction e e e e e 1175
2622 BaSICUSAZE .« & v v v vt e 1177

263View Helper - Menu 1179
263.1 Introduction L e e 1179
2632 BaSICUSAZE .« « v v v v v e 1180
263.3 Calling renderMenu() directly e 1181
263.4 Rendering the deepest active Menu oL 1182
263.5 Rendering with maximumdepth L 1182
263.6 Rendering with minimumdepth e e 1183
263.7 Rendering only the active branch 1184
263.8 Rendering only the active branch with minimumdepth 1185
263.9 Rendering only the active branch with maximumdepth 0., 1185
263.10Rendering only the active branch with maximum depthandnoparents 1186

XXiii

263.11Rendering a custom menu using a partial view SCript o e e . 1186

264View Helper - Sitemap 1189
264.1 Introduction e e e e e e e e e e e e e e e e e 1189
20642 BaSICUSAZE .« . v v v v v e 1190
264.3 Rendering using nO ACL10le o i i e e e e 1191
264.4 Rendering using a maximumdepth o L o 1192

265View Helper - Navigation Proxy 1195
265.1 Introduction L. L e e e e e e e e 1195
265.2 Methods L e e 1195

266Introduction to Zend\Paginator 1197

267Usage 1199
267.1 Paginating data collections e e e e e e e e e 1199
267.2 The DbSelect adapter o o i e e e e e e e e e e 1200
267.3 Rendering pages with VIew SCIIpts L e e e e 1201

268Configuration 1207

269Advanced usage 1209
269.1 Custom data source adapterst i it i e e e e e e e e e e e 1209
269.2 Custom scrolling styles o o e e e e e e e e e e e 1209
269.3 Caching features i e e e e e e e 1210

270Introduction to Zend\Permissions\Acl 1213
270.1 RESOUICES .« o ¢ v v v v e e e e i e e e e e e e e e e e e e e e e 1213
2702 ROIES . . o o o e e e e e 1214
270.3 Creating the Access Control List 1215
270.4 Registering Roles L e 1215
270.5 Defining Access Controls L. e e e 1216
270.6 Querying an ACL e e e e e e 1217

271Refining Access Controls 1219
271.1 Precise Access Controls o i i e e e e e e e e e e e 1219
271.2 Removing Access Controls i e e e e e e e e e e 1220

272Advanced Usage 1223
272.1 Storing ACL Data for Persistence i i i e e e e e e 1223
272.2 Writing Conditional ACL Rules with Assertions 1223

273Introduction to Zend\Permissions\Rbac 1225
2731 ROIES .« . o o o e e e e 1225
2732 PermiSSions« . . uu e e e e e e e e e e e e e e e e e e 1225
273.3 Dynamic ASSEItIONS« . . it e e e e e e e e e e e e e e e e 1225

274Methods 1227

275Examples 1229
275.1 ROIES . . o o e e e e e e e e e e 1229
2752 PermiSSions ot u e e e e e e e e e e e e e e e e e 1230
275.3 Dynamic ASSETHONS . . v v v v v vt e 1230

276Progress Bars 1233
276.1 Introduction e e e e e e e 1233

XXiv

276.2 BasicUsage
276.3 Persistent Progress
276.4 Standard Adapters

277File Upload Handlers
277.1 Introduction
277.2 Methods of Reporting Progress
277.3 Standard Handlers

278Introduction to Zend\Serializer
278.1 Quick Start
278.2 Basic configuration Options .
278.3 Available Methods

279Zend\Serializer\Adapter
279.1 The PhpSerialize Adapter . .
279.2 The IgBinary Adapter
279.3 The Wddx Adapter
279.4 The Json Adapter
279.5 The PythonPickle Adapter . .
279.6 The PhpCode Adapter

280Introduction to Zend\Server

281Zend\Server\Reflection
281.1 Introduction
2812 Usage

282Zend\ServiceManager

283Zend\ServiceManager Quick Start
283.1 Using Configuration
283.2 Modules as Service Providers
283.3 Examples

284Delegator service factories
284.1 Delegator factory signature .
284.2 A Delegator factory use case .

285Lazy Services
285.1 Usecases
2852 Setup
285.3 Practical example
285.4 Configuration

286Session Config
286.1 Standard Config
286.2 Session Config
286.3 Custom Configuration

287Session Container
287.1 BasicUsage

287.2 Setting the Default Session Manager i i e e

288Session Manager

288.1 Initializing the Session Manager o e

XXV

288.2 Session Compatibility e e e e e e e e e e e 1279

289Session Save Handlers 1281
289.1 Cache e e e e e e e 1281
289.2 DbTableGateway v v v o i e 1281
289.3 MongoDB e e e e e e e e 1282
289.4 Custom Save Handlers o . o e e e e e 1283

290Session Storage 1285
290.1 Array StOrage o v e e e e e e e e e e e e e e e 1285
290.2 SeSSION StOTAZe o v v v e e e e e e e e e e e e e e e e e e 1285
290.3 Session Array StOrage e e e e e 1286
290.4 Custom StOrage v v v v i i e e e e e e e e e e e e e e 1286

291Session Validators 1287
291.1 Hetp User Agent o .o ot e e e e 1287
291.2 Remote Addr L e e e e e e e e 1287
291.3 Custom Validators o o e e e e e e e e e e e e 1288

2927 end\Soap\Server 1289
292.1 Zend\Soap\Server CONSIIUCIOr v v v v v vt e e e et e e e e e e e e e 1289
292.2 Methods to define Web Service APT e 1290
292.3 Request and response objects handling L. Lo e 1291
292.4 Document/Literal WSDL Handling 1293

293Zend\Soap\Client 1295
293.1 Zend\Soap\Client CONSIrUCIOT v v v v v v e et e e e e e e e e e e e e e e e 1295
293.2 Performing SOAP Requests o o i e e e e e e 1296

294WSDL Accessor 1299
294.1 Zend\Soap\Wsdl constructor e e e e e 1299
294.2 addMessage() method L. e e e e e e e 1299
294.3 addPortType() method 1300
294.4 addPortOperation() method 0 . e e e e e e e e e e 1300
294.5 addBinding() method L. e e e e e e e e e 1300
294.6 addBindingOperation() method L e 1301
294.7 addSoapBinding() method oL 1301
294.8 addSoapOperation() method Lo 1301
294.9 addService() method 1301
204 10TYyPE MAPPING + v v v v v o e 1302
294.11addDocumentation() method e e e 1303
294.12Get finalized WSDL document e e 1304

295AutoDiscovery 1305
295.1 AutoDiscovery Introduction oL e e e e e e e e e e 1305
295.2 Class autodiSCOVEIING v v v v v i et e 1306
295.3 Functions autodiSCOVETING v v v v vt et e e e e e e e e e e e e e e e e e 1307
295.4 Autodiscovering Datatypes oL e e 1307
295.5 WSDL Binding Styles o i e e e e e e e e e e e 1307

296Zend\Stdlib\Hydrator 1309
296.1 HydratorInterface L. e 1309
2002 USAZE . . v v o e 1309
296.3 Available Implementations oL e e e e e e e e e e e e 1310

XXVi

297Zend\Stdlib\Hydrator\Filter

297.1 Filter implementatio
297.2 Remove filters . .
297.3 Add filters

]

297.4 Use the composite for complex filters L L
297.5 Using the provider interface L e e

298Zend\Stdlib\Hydrator\Strategy

298.1 Adding strategies to

the hydrators L e

298.2 Available implementations e e e e e e e e e e e e e e
298.3 Writing Custom StrateZi€S . . . « . v v v v v v v e

299A ggregateHydrator

299.1 Installation reqUITEMENES v v v v v v v e

299.2 Basic usage
299.3 Advanced use cases

300Introduction to Zend\Tag

301Creating tag clouds with Zend\Tag\Cloud

301.1 Decorators

302Introduction to Zend\Test

303Unit testing with PHPUnit

303.1 Setup your TestCase

303.2 Testing your Controllers and MVC Applications o o v i v ..

304Zend\Text\Figlet
304.1 Introduction . . .
304.2 Basic Usage . . .

305Zend\Text\Table
305.1 Introduction . . .
305.2 Basic Usage . . .

306Zend\Uri
306.1 Overview

306.2 CreatingaNew URI o .. e

306.3 Manipulating an Exi

sting URT o o e e e

306.4 Common Instance Methods e e e e

307Introduction to Zend\Validator

307.1 What is a validator?

307.2 Basic usage of validatorso e e e e e e e e e e e
307.3 Customizing MESSAZES . . .« « ¢ v v v v v v e e e e e e e e e e e e e e e e e e

307.4 Translating message

308Standard Validation Clas
308.1 Included Validators

T

S€s

308.2 Deprecated Validators o Lo e e e e e e e e

309Barcode Validator

309.1 Supported options for Zend\Validator\Barcode

309.2 Basic usage
309.3 Optional checksum

1311
1311
1312
1312
1313
1314

1317
1317
1318
1319

1321
1321
1321
1322

1325

1327
1329

1333

1335
1335
1336

1341
1341
1342

1343
1343
1344

1345
1345
1345
1346
1346

1351
1351
1351
1352
1353

1355
1355
1356

1357
1359
1360
1360

XXVii

309.4 Writing custom adapters

310Between Validator
310.1 Supported options for Zend\Validator\Between .
310.2 Default behaviour for Zend\Validator\Between .
310.3 Validation exclusive the border values

311Callback Validator
311.1 Supported options for Zend\Validator\Callback .
311.2 Basicusageo i e
311.3 Usage withclosures
311.4 Usage with class-based callbacks
311.5 Addingoptions

312Date Validator
312.1 Supported options for Zend\Validator\Date . . .
312.2 Default date validation
312.3 Self defined date validation

313Db\RecordExists and Db\NoRecordExists Validators
313.1 Supported options for Zend\Validator\Db* . . .
3132 Basicusageo e e e
313.3 Excludingrecords
313.4 Database Schemas
313.5 Using a Selectobject

314Digits Validator
314.1 Supported options for Zend\Validator\Digits . .
314.2 Validating digits

315File Validation Classes
3151 Cre32 .o oo
315.2 ExcludeExtension
315.3 ExcludeMimeType
BISAEXIStS . . v . oo
3155 Extensiono
31566 Hash L.
315.7 ImageSize
315.8 IsCompressed
3159 1Islmage
31S.IOMAS . . . L
315. 1 MMimeType oL
315.I2NotExistso
315.13Shal oo
315.14Sizeo
315.18UploadFile
315.16WordCount,

316Hex Validator
316.1 Supported options for Zend\Validator\Hex . . .

317Hostname Validator
317.1 Supported options for Zend\Validator\Hostname
317.2 Basicusageo i e
317.3 Validating different types of hostnames

XXViii

318Iban Validator

318.1 Supported options for Zend\Validator\Ilban

318.2 IBAN validation

3191dentical Validator

319.1 Supported options for Zend\Validator\Identical,

319.2 Basicusage
319.3 Identical objects
319.4 Formelements
319.5 Strict validation.
319.6 Configuration

320Ip Validator

320.1 Supported options for Zend\Validator\lp L

320.2 Basicusage
320.3 Validate IPv4 or IPV6 alone

321Isbn Validator

321.1 Supported options for Zend\Validator\Isbn oo

321.2 Basicusage

321.3 Setting an explicit ISBN validationtype

321.4 Specifying a separator restriction . .

322Regex Validator

322.1 Supported options for Zend\Validator\Regex Lo oL,

322.2 Validation with Zend\Validator\Regex
322.3 Pattern handling

323Sitemap Validators
323.1 Sitemap\Changefreq
323.2 Sitemap\Lastmod
323.3 Sitemap\Loc
323.4 Sitemap\Priority

323.5 Supported options for Zend\Validator\Sitemap_* oo oL,

324Step Validator

324.1 Supported options for Zend\Validator\Step Lo

3242 Basicusage
324.3 Using floating-point values

325Validator Chains
3251 Overviewo ...

326Writing Validators
326.1 Overview
326.2 Creating a Simple Validation Class .

326.3 Writing a Validation Class having Dependent Conditions
326.4 Validation with Independent Conditions, Multiple Reasons for Failure

327Validation Messages

327.1 Using pre-translated validation messages oot e

327.2 Limit the size of a validation message

XXix

328Getting the Zend Framework Version
3281 OVEIVIEW . . . o o o e e e
328.2 Example of the compareVersion() Method Lo oo,
328.3 Example of the getLatest() Method L o

329Zend\View Quick Start
3201 OVEIVIEW . . . o v v ot e e e e i e e e e e e e e e e e e e e e e e
3202 USa8€

330The PhpRenderer
330.1 USAE .« . v v o i e e e e e e e e e e e
330.2 Options and Configuration o ot it e e e e e e e e e e e
330.3 Additional Methods e

331PhpRenderer View Scripts
331.1 Escaping OUtput o o i i e e e e e e e e e e e e e e e

332The ViewEvent
332.1 Order of €Vents i e e e e e e e e e e e e e e e
332.2 ViewEvent::EVENT_RENDERER
332.3 ViewEvent::EVENT_RENDERER_POST
332.4 ViewEvent::EVENT_RESPONSE e e e

333View Helpers
333.1 Introduction e e e e e e e e
3332 Included Helpers o o o e e e e e e e

334View Helper - BasePath
334.1 Introduction e e e e e e e e e
3342 Basic USage . . . v v v v e

335View Helper - Cycle
335.1 Introduction e e e e e e
3352 Basic USage . . . v o v v e e e e e e e e e e e e e e e e e
335.3 Working with twoormore cycles L e e e e

336View Helper - Doctype
336.1 Introductiono e e e
336.2 Basic USage o v i e e e e e e e e e e e e e e e e
336.3 Retrieving the Doctype oL e e e e e e
336.4 Choosing a Doctype to Use with the Open Graph Protocol
336.5 Zend MVC View Manager v v v v v e e e e e e e e e e e e e e e e e e

337FlashMessenger Helper
337.1 Introduction e e e e e e
337.2 Basic USAage . . . v v v v e e e e e e e e e e e e e e e e e e e
3373 CSSLayout. oo
337.4 HTML Layout o o o e e e e e e e e e e e e e e e e e e
337.5 Sample Modification for Twitter Bootstrap3 L oL
337.6 Alternative Configuration of the ViewHelper Layout

338Gravatar Helper
338.1 Introduction e e e e e e e
3382 Basic Usage e e e
338.3 Custom SettiNgS . . . v v v v e

XXX

339View Helper - HeadLink

339.1 Introduction . .
339.2 Basic Usage . .

340View Helper - HeadMeta

340.1 Introduction . .
340.2 Basic Usage . .

340.3 Usage with XHTMLI_RDFA doctype o i i i e e e e e e e e

341View Helper - HeadScript

341.1 Introduction . .
341.2 Basic Usage . .
341.3 Capturing Scripts

342View Helper - HeadStyle

342.1 Introduction . .
342.2 Basic Usage . .

342.3 Capturing Style Declarations o 0 e e e e e e e e e

343View Helper - HeadTitle

343.1 Introduction . .
343.2 Basic Usage . .

344View Helper - HtmlList
344.1 Introduction . .
344.2 Basic Usage . .

345View Helper - HTML Object

345.1 Introduction . .
345.2 Flash helper . .

345.3 Customizing the object by passing additional arguments

346View Helper - Identity
346.1 Introduction . .
346.2 Basic Usage . .

346.3 Using with ServiceManager o e e e e e e e e

347View Helper - InlineScript

347.1 Introduction . .
347.2 Basic Usage . .
347.3 Capturing Scripts

348View Helper - JSON
348.1 Introduction . .
348.2 Basic Usage . .

349View Helper - Partial
349.1 Introduction . .
349.2 Basic Usage . .
349.3 Using PartialLoop

to Render Iterable Models e

350View Helper - Placeholder

350.1 Introduction . .
350.2 Basic Usage . .

350.3 Aggregate CONtENt v v v v vt it e

350.4 Capture Content

1463
1463
1463

1465
1465
1466
1466

1469
1469
1471
1471

1473
1473
1476
1476

1477
1477
1477

1479
1479
1479

1483
1483
1483
1483

1485
1485
1485
1485

1487
1487
1487
1488

1489
1489
1489

1491
1491
1491
1492

1495
1495
1495
1495
1496

XXXi

350.5 Concrete Implementations o v v vt i e e e e e e e e e e e e e e e e e

351View Helper - URL
351.1 Basic Usage o o ot e e e e e e
351.2 Query String ATQUMENES v v v v v v e
3513 Fragments o v v e
351.4 Reusing Matched Parameters e

352Advanced usage of helpers
352.1 Registering Helpers 0 L o o e e e e e e
352.2 Writing Custom Helpers 0 o e
352.3 Registering Concrete Helpers o e

353Introduction to Zend\XmlIRpc
353.1 Quick Start oL L e e e e e

354Zend\XmlIRpc\Client
354.1 Introduction L. L e e e e e e e
3542 Method Calls o o o e e e e e e
354.3 Types and CONVETSIONS o o v vt vttt e e e e e e e e e e e e e e
354.4 Server Proxy Object e e
354.5 Error Handling o e e e e e e e
354.6 Server INtroSpection L i e e e e e e e e e e e e e e e e e e
354.7 From Request to Response o o e e e e e e
354.8 HTTP Client and Testing o o 0 i i e e e e e e e e e e e e e

355Zend\XmlIRpc\Server
355.1 Introduction L e e e e e e e e e e e e e e
3552 Basic Usage o o o e e e e e e e e e e
3553 Server StrUCTUIE o v v v it e e e e e e e e e e e e e e e e
355.4 Anatomy of @ WebSEIVICE L e e e e e e e e e e e e e
355.5 Conventionst . e e e e e e e e e e e e e e e e e e e
355.6 Utilizing Namespaces o o v i v v i i e e e e e e e e e e e e e e e e e e
355.7 Custom Request Objects o o it e e e e e e e e
355.8 Custom Responses o oL
355.9 Handling Exceptions via Faults e
355.10Caching Server Definitions Between Requests,
355.11Usage Examples e e e e e e e e e e e e e
355.12Performance optimization oL L e e e e e e e e e e e e e e e e e

356ZendService\Akismet
356.1 Introduction e e e e e e
356.2 Verify an APLKey e e e e
356.3 Check forspam o o L e e e e
356.4 Submitting Known spam e e e e e e e e e e e e e e
356.5 Submitting false positives (ham) L e e e
356.6 Zend-specific Methods Lo e e e e e e

357ZendService\Amazon
357.1 Introduction L. e e e e e e e e e
357.2 Country Codes v v v i i e e e e e e e e e e e e e e e
357.3 Looking up a Specific Amazon Itemby ASIN oL
357.4 Performing Amazon Item Searches L e
357.5 Using the Alternative Query APL e e e e
357.6 ZendService\Amazon Classes L e e e e

XXXii

358ZendService\Amazon\S3

358.1 Introduction e
358.2 Registering with Amazon S3 L o
358.3 APl Documentationo .ol e e
3584 Features oL e e e e e e
358.5 Getting Started
358.6 Bucketoperationso e e
358.7 Object Operations v i i e e e e e e e e e e e e
358.8 Data Streaming e e
3580 Stream wrapperol

359ZendService\Amazon\Sqs

359.1 Introduction e e e e e
359.2 Registering with Amazon SQS
359.3 API Documentationot e
3504 Features« v v v vt e e e e e e e e
359.5 Getting Started e
359.6 Queue Operations i e e e e e e e e e e e e e
359.7 Message operations

360ZendService\Amazon\Ec2

360.1 Introduction e e e e e
360.2 Whatis Amazon Ec2?
360.3 Static Methods e

361ZendService\Amazon\Ec2: CloudWatch Monitoring

361.1 CloudWatch Usage it

362ZendService\Amazon\Ec2: Elastic Block Storage (EBS)

362.1 Create EBS Volumes and Snapshots
362.2 Describing EBS Volumes and Snapshots
362.3 Attach and Detaching Volumes from Instances
362.4 Deleting EBS Volumes and Snapshots

363ZendService\Amazon\Ec2: Elastic IP Addresses

363.1 Allocating anew ElasticIP

364ZendService\Amazon\Ec2: Instances

364.1 Instance Types o v v i it e
364.2 Running Amazon EC2 Instances
364.3 Amazon Instance Utilities

365ZendService\Amazon\Ec2: Regions and Availability Zones

365.1 Amazon EC2 Regions i i
365.2 Amazon EC2 Availability Zones

366ZendService\Amazon\Ec2: Reserved Instances

366.1 How Reserved Instances are Applied
366.2 Reserved Instances Usage oo i e

367ZendService\Amazon\Ec2: Security Groups

367.1 Security Group Maintenance oo e
367.2 Authorizing ACCess e
367.3 Revoking ACCESS . . . v v v v v i i e e e e e e e e

............. 1539

............. 1544

............. 1561

XXXiii

368ZendService\Amazon\Ec2: Windows Instances
368.1 Windows Instances Usage o v v i v v it e e e e e e e e e e e e e e e

369ZendService\Apple\Apns
369.1 Introduction e e e e e e e e e e e e e e e e e e
309.2 Quick Start e e e e e e e e e e e e e
369.3 Feedback Service oL e e e e e e e

370ZendService\Audioscrobbler
370.1 IntroducCtion e e e e e e e e e e e e e e
3702 USEIS & v o v o e o e
3703 AIISES . . . o e e e e e e e e e e e e e e e e
370.4 Tracks o e e e e e e e e e e e
370.5 TaBS . v v v v e e e e e e e e e e e e e e e e e e e
370.6 GIOUPS .« . v v v v e
370.7 FOTUMS o e o e e e e e e e e e e e e e e e e e e e

371ZendService\Delicious
371.1 Introduction e e e e e e e e e e e e e e
3712 Retrieving POStS o v o o i e e e e e e e e e e
371.3 ZendService\Delicious\PostList e e
3714 Editing POSES . .« o v v v e e e e e e e e e e e e e
371.5 Deleting POSES .« . v v v v e
371.6 Adding NewW POSES . & o v o v e
BTLT Tags . o o o e o e e e e e e e e e e e e e e e e e
371.8 Bundles e e e e e e e

372ZendService\DeveloperGarden
372.1 Introduction e e
372.2 BaseUSerServiCe o v i i i e e e e e e e e e
3723 TP Location o o i o e e e e e e e e e e e e e e e s
372.4 Local Search e e e e
372.5 Send SMS . . L L e e e

372.7 Voice Call o e e e e e e e e e e
372.8 ConferenceCall e e e e e e e e e
372.9 Performance and Caching e e e e

373ZendService\Flickr
373.1 Introductionl e e
373.2 Finding Flickr Users’ Photos and Information
373.3 Finding photos From a GroupPool
373.4 Retrieving Flickr Image Details e
373.5 ZendService\Flickr Result Classes i it e

374ZendService\Google\Gem
374.1 Introduction o e
3742 Quick Start L e e

375ZendService\LiveDocx
375.1 Introduction e e e e e e e e
375.2 ZendService\LiveDocx\MailMerge e e e e e e e e

XXXiv

376ZendService\Rackspace

376.1 Introduction

376.2 Registering with Rackspace

3763 Cloud Files
376.4 Cloud Servers
376.5 Available Methods

377ZendService\Rackspace\Servers

377.1 Overview
377.2 Terminology
377.3 Quick Start
377.4 Available Methods
377.5 Examples

378ZendService\Rackspace\Files

378.1 Overview
378.2 Quick Start
378.3 Available Methods
378.4 Examples

379ZendService\ReCaptcha

379.1 Introduction
379.2 Simplestuse
379.3 Hiding email addresses . . .

380ZendService\SlideShare

380.1 Getting Started with ZendService\SlideShare,

380.2 The SlideShow object . . .
380.3 Retrieving a single slide show

380.4 Retrieving Groups of Slide Shows L e
380.5 ZendService\SlideShare Caching policies e
380.6 Changing the behavior of the HTTP Client

381ZendService\StrikeIron

381.1 Overview

381.2 Registering with Strikelron

381.3 Getting Started
381.4 Making Your First Query . .
381.5 Examining Results
381.6 Handling Errors

381.7 Checking Your Subscription

382ZendService\StrikeIron: Bundled Services

382.1 ZIP Code Information . . .
382.2 U.S. Address Verification .
382.3 Sales & Use Tax Basic . . .

383ZendService\StrikeIron: Advanced Uses

383.1 Using Services by WSDL .

383.2 Viewing SOAP Transactions v v v v v vt i e i e e e e e e e e e e e e

384ZendService\Technorati

384.1 Introduction
384.2 Getting Started
384.3 Making Your First Query . .

1621
1621
1621
1621
1622
1622

1625
1625
1625
1626
1627
1631

1633
1633
1633
1635
1638

1641
1641
1641
1642

1645
1645
1645
1648
1648
1649
1649

1651
1651
1652
1652
1652
1653
1654
1654

1657
1657
1658
1658

1661
1661
1661

1663
1663
1663
1663

XXXV

384.4 Consuming Results e e e e e e e
384.5 Handling Errors o e e e e e e e e e
384.6 Checking Your API Key Daily Usage i ittt
384.7 Available Technorati Queries o i i i i e e e e e
384.8 ZendService\Technorati Classes o v i i i i i e e e e e e e e e e e e e

385ZendService\Twitter
385.1 Introduction e e e e e e e e e e e e e
385.2 Quick Start oL L e
385.3 Authentication e e e e e

385.6 Blocking Methods L
385.7 Direct Message Methods L e
385.8 Favorites Methods e e e e e e e e e
385.9 Friendship Methods e e e e e e e
385.108earch Methods L e
385.11Status Methods oL e e e
385.12User Methods o . e e

386ZendService\WindowsAzure
386.1 Introduction e e e e e e e e e e e e e
386.2 Installing the Windows Azure SDK o o
386.3 API Documentationt e e e e e e
386.4 Features o v v i e e e e e e e e e e e e e
386.5 Architecture o e e e e e e e e e e e e

387ZendService\WindowsAzure\Storage\Blob
387.1 APLExamples o o e e e e e e e e e e e e e e e e
387.2 ROOt CONAINGT v v v vttt et e e e e e e e e e e e e e e e e e
387.3 Blob storage Stream WIapper et i e e e e e e e e e e e e e e e e e
387.4 Shared Access SIZNAtUTE Lt v v v v vt e

388ZendService\WindowsAzure\Storage\Table
388.1 Operations ontables e
388.2 Operations 0N entitieS v v v v e
388.3 Table storage session handler L

389ZendService\WindowsAzure\StorageQueue
389.1 APLExamples o . o e e e e e e e e e

390Copyright Information

391Introduction to Zend Framework 2

392User Guide

393In-depth tutorial for beginners

394Getting Started With Zend Studio 10 & Zend Server 6
395Zend Framework Tool (ZFTool)

396Learning Zend Framework 2

397Migration

1713

1715

1717

1719

1721

XXXVi

398Zend Framework 2 Reference 1723

398.1 Zend\Authentication i e e e e e e e e e e e e e e e 1723
308.2 Zend\Barcode e e e 1723
308.3 Zend\Cache e e e e 1723
398.4 Zend\Captcha oL e 1724
398.5 Zend\Code\Generator v v v it e e e e e e e e e e 1724
398.6 Zend\Config e e e e e e e e e e e 1724
308.7 Zend\Console e e e e e e e e e e e 1724
398.8 Zend\ConsoleNGEtopt L e e e e e e e e e e e e e e 1724
398.9 Zend\Crypt L e e e e e 1725
308.10Zend\Db s 1725
398.11Zend\Debug e e e e e e e e e e 1725
308.12Zend\Di e e e e e e e e e e 1725
308.13Zend\Dom e e e e e e e e e e e 1725
398.14Zend\EScaper e e e 1726
398.15Zend\EventManager e e e e e e e e e e e 1726
398.16Zend\Feed e 1726
308.17Zend\File e e e e e e e 1726
308.1&Zend\Filter e e e e e e e e e 1726
308.1%end\Form L e e e e e e e e 1727
3982(0end\HEtp L L e e e e e e 1727
308.21Zend\I18no L s 1727
398.2%7end\InputFilter e e e e e e e e 1728
308.237end\VsOn e e e e e e e e e 1728
398247end\Ldap e e e e e 1728
398.257Zend\Loader L e e e e e e e 1728
398.26Zend\LOZ L e 1729
308.277end\Mail L e e 1729
308.2&end\Math L e e e 1729
398.29end\MemoOry e e e e e e e e e e e e e e e e e e e 1729
308 30end\MIme e e e e 1729
398.31Zend\ModuleManager L. e 1729
308.327Zend\MVC e e e e e 1730
398.33Zend\Navigation e e e e e e e e e e e e e e e e e e 1730
398.34Zend\Paginator L. e e e e e e e e e e e e e e e e 1730
308.35Zend\Permissions\ACL L L e e e e e e e e 1730
398.3Zend\Permissions\Rbac L e e e 1731
398.37Zend\ProgressBar L 1731
398.3&end\Serializer e e e e e 1731
308.3Hend\SEIVET i e e e e e e e e e e e e e e e e e 1731
398.4end\ServiceManager i e e e e e e e e e e e e e e e e e e 1731
308.417end\SESSION e e e e e e e e e e e e e e 1731
398.427end\Soap L L e 1732
3908.437end\Stdlib L e e 1732
398.447end\Tag o e e e e e e e e e e e e 1732
308.457end\Test e e e e e e e e e e e 1732
308.4GZend\Text e e e 1732
308.477end\Uri L e 1732
398.4&7end\Validator L L e e s 1732
308.49end\VErsion i e e e e e e e e e e e e 1733
308.5(0Zend\VIew e e e e e e e e e 1733
398.51Zend\XmIRpe L. 1734
399Services for Zend Framework 2 Reference 1735

XXXVii

3990.1 ZendService\AKISMEL e e e e e e e e e e e e 1735

399.2 ZendService\Amazon i e e e e e e e e e e e e e e e e e 1735
399.3 ZendService\AppIEADPNS L L e e e e e e e e e e 1735
399.4 ZendService\Audioscrobbler L e e e e e e e 1735
399.5 ZendService\Delicious e 1736
399.6 ZendService\DeveloperGarden e e 1736
399.7 ZendService\FLickr e 1736
399.8 ZendService\Google\Gem L. L e e e e e e e e 1736
399.9 ZendService\LiveDocX L e e e 1736
399.1(endService\Rackspace e 1736
399.11ZendService\ReCaptcha L e 1736
399.1ZendService\SlideShare e 1736
399.137ZendService\Strikelron L. L e e e e e e 1737
399.147ZendService\Technorati e 1737
3990.157endService\TWItter e e e e e e e e e e e e e e e 1737
399.16ZendService\WindoWSAZUIE o o i i e e e e 1737
400Copyright 1739
401Indices and tables 1741

XXXViii

CHAPTER 1

Overview

Zend Framework 2 is an open source framework for developing web applications and services using PHP 5.3+. Zend
Framework 2 uses 100% object-oriented code and utilises most of the new features of PHP 5.3, namely namespaces,
late static binding, lambda functions and closures.

Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over 15 million downloads.

Note: ZF2 is not backward compatible with ZF'1, because of the new features in PHP 5.3+ implemented by the
framework, and due to major rewrites of many components.

The component structure of Zend Framework 2 is unique; each component is designed with few dependencies on
other components. ZF2 follows the SOLID object-oriented design principle. This loosely coupled architecture allows
developers to use whichever components they want. We call this a “use-at-will” design. We support Pyrus and
Composer as installation and dependency tracking mechanisms for the framework as a whole and for each component,
further enhancing this design.

We use PHPUnit to test our code and Travis CI as a Continuous Integration service.

While they can be used separately, Zend Framework 2 components in the standard library form a powerful and exten-
sible web application framework when combined. Also, it offers a robust, high performance MVC implementation,
a database abstraction that is simple to use, and a forms component that implements HTML5 form rendering, vali-
dation, and filtering so that developers can consolidate all of these operations using one easy-to-use, object oriented
interface. Other components, such as Zend\Authentication and Zend\Permissions\Acl, provide user
authentication and authorization against all common credential stores.

Still others, with the ZendService namespace, implement client libraries to simply access the most popular web
services available. Whatever your application needs are, you're likely to find a Zend Framework 2 component that can
be used to dramatically reduce development time with a thoroughly tested foundation.

The principal sponsor of the project ‘Zend Framework 2’ is Zend Technologies, but many companies have contributed
components or significant features to the framework. Companies such as Google, Microsoft, and Strikelron have
partnered with Zend to provide interfaces to web services and other technologies they wish to make available to Zend
Framework 2 developers.

Zend Framework 2 could not deliver and support all of these features without the help of the vibrant Zend Framework
2 community. Community members, including contributors, make themselves available on mailing lists, IRC channels
and other forums. Whatever question you have about Zend Framework 2, the community is always available to address
it.

http://en.wikipedia.org/wiki/Object-oriented_programming
http://php.net/manual/en/language.namespaces.php
http://php.net/lsb
http://php.net/manual/en/functions.anonymous.php
http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29
http://pear.php.net/manual/en/pyrus.php
http://getcomposer.org/
http://www.phpunit.de
http://travis-ci.org/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#PHP
http://www.w3.org/TR/html5/forms.html#forms
http://www.zend.com
http://framework.zend.com/archives
http://www.zftalk.com

Zend Framework 2 Documentation, Release 2.3.5

2 Chapter 1. Overview

CHAPTER 2

Installation

2.1 Using Composer

The recommended way to start a new Zend Framework project is to clone the skeleton application and use composer
to install dependencies using the create-project command:

curl -s https://getcomposer.org/installer | php —-—
php composer.phar create-project -sdev —--repository-url="https://packages.zendframework.com" zendfrar

Alternately, clone the repository and manually invoke composer using the shipped composer.phar:

cd my/project/dir

git clone git://github.com/zendframework/ZendSkeletonApplication.git
cd ZendSkeletonApplication

php composer.phar self-update

php composer.phar install

(The self-update directive is to ensure you have an up-to-date composer .phar available.)
Another alternative for downloading the project is to grab it via curl, and then pass it to far:

cd my/project/dir
curl -#L https://github.com/zendframework/ZendSkeletonApplication/tarball/master | tar xz —--strip-cor

You would then invoke composer to install dependencies per the previous example.

2.2 Using Git submodules

Alternatively, you can install using native git submodules:

git clone git://github.com/zendframework/ZendSkeletonApplication.git --recursive

2.3 Web Server Setup

2.3.1 PHP CLI Server

The simplest way to get started if you are using PHP 5.4 or above is to start the internal PHP cli-server in the root
directory:

Zend Framework 2 Documentation, Release 2.3.5

i php -S 0.0.0.0:8080 -t public/ public/index.php

This will start the cli-server on port 8080, and bind it to all network interfaces.

Note: The built-in CLI server is for development only.

2.3.2 Apache Setup

To use Apache, setup a virtual host to point to the public/ directory of the project. It should look something like
below:

1 <VirtualHost *:80>

2 ServerName zf2-tutorial.localhost

3 DocumentRoot /path/to/zf2-tutorial/public
4

5 <Directory /path/to/zf2-tutorial/public>
6 AllowOverride All

7 Order allow,deny

8 Allow from all

9 </Directory>

10 </VirtualHost>

or, if you are using Apache 2.4 or above:

1 <VirtualHost *:80>

2 ServerName zf2-tutorial.localhost

3 DocumentRoot /path/to/zf2-tutorial/public
4

5 <Directory /path/to/zf2-tutorial/public>
6 AllowOverride All

7 Require all granted

8 </Directory>

9 </VirtualHost>

Rewrite Configuration

URL rewriting is a common function of HTTP servers, and allows all HTTP requests to be routed through the
index.php entry point of a Zend Framework Application.

Apache comes bundled with the module‘‘mod_rewrite‘* for URL rewriting. To use it, mod_rewrite must either be
included at compile time or enabled as a Dynamic Shared Object (DSO). Please consult the Apache documentation
for your version for more information.

The Zend Framework Skeleton Application comes with a . htaccess that includes rewrite rules to cover most use
cases:

1 RewriteEngine On

> # The following rule tells Apache that if the requested filename
3 # exists, simply serve it.

4+ RewriteCond %${REQUEST_FILENAME} -s [OR]

5 RewriteCond %${REQUEST_FILENAME} -1 [OR]

6 RewriteCond $%${REQUEST_FILENAME} -d

7 RewriteRule ".*x$ - [NC,L]

s # The following rewrites all other queries to index.php. The

9 # condition ensures that if you are using Apache aliases to do

10 # mass virtual hosting, the base path will be prepended to

4 Chapter 2. Installation

http://httpd.apache.org/docs/

20

21

22

23

24

25

26

Zend Framework 2 Documentation, Release 2.3.5

allow proper resolution of the index.php file; it will work

in non-aliased environments as well, providing a safe, one-size
fits all solution.

RewriteCond %${REQUEST_URI}::$1 ~(/.+) (.+)::\28

RewriteRule "~ (.*) — [E=BASE:%1]

RewriteRule " (.*)$ %${ENV:BASE}index.php [NC,L]

2.3.3 Microsoft Internet Information Services

As of version 7.0, IIS ships with a standard rewrite engine. You may use the following configuration to create the
appropriate rewrite rules.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>
<rewrite>
<rules>
<rule name="Imported Rule 1" stopProcessing="true">
<match url="".x5" />
<conditions logicalGrouping="MatchAny">
<add input="{REQUEST_FILENAME}"
matchType="IsFile" pattern=""
ignoreCase="false" />
<add input="{REQUEST_FILENAME}"
matchType="IsDirectory"

pattern=""
ignoreCase="false" />
</conditions>
<action type="None" />

</rule>

<rule name="Imported Rule 2" stopProcessing="true">
<match url="".x$" />
<action type="Rewrite" url="index.php" />

</rule>

</rules>
</rewrite>
</system.webServer>
</configuration>

2.3. Web Server Setup 5

Zend Framework 2 Documentation, Release 2.3.5

6 Chapter 2. Installation

CHAPTER 3

Getting Started with Zend Framework 2

This tutorial is intended to give an introduction to using Zend Framework 2 by creating a simple database driven
application using the Model-View-Controller paradigm. By the end you will have a working ZF2 application and you
can then poke around the code to find out more about how it all works and fits together.

3.1 Some assumptions

This tutorial assumes that you are running at least PHP 5.3.23 with the Apache web server and MySQL, accessible via
the PDO extension. Your Apache installation must have the mod_rewrite extension installed and configured.

You must also ensure that Apache is configured to support . htaccess files. This is usually done by changing the
setting:

AllowOverride None

to

AllowOverride FileInfo

in your httpd. conf file. Check with your distributions documentation for exact details. You will not be able to
navigate to any page other than the home page in this tutorial if you have not configured mod_rewrite and .htaccess
usage correctly.

Note: Alternatively, if you are using PHP 5.4+ you may use the built-in web server instead of Apache for development.

3.2 The tutorial application

The application that we are going to build is a simple inventory system to display which albums we own. The main
page will list our collection and allow us to add, edit and delete CDs. We are going to need four pages in our website:

Page Description

List of This will display the list of albums and provide links to edit and delete them. Also, a link to enable
albums adding new albums will be provided.

Add new This page will provide a form for adding a new album.

album

Edit album | This page will provide a form for editing an album.

Delete This page will confirm that we want to delete an album and then delete it.

album

Zend Framework 2 Documentation, Release 2.3.5

We will also need to store our data into a database. We will only need one table with these fields in it:

Field name | Type Null? | Notes

id integer No Primary key, auto-increment
artist varchar(100) | No

title varchar(100) | No

8 Chapter 3. Getting Started with Zend Framework 2

1

CHAPTER 4

Getting started: A skeleton application

In order to build our application, we will start with the ZendSkeletonApplication available on github. Use Composer
(http://getcomposer.org) to create a new project from scratch with Zend Framework:

php composer.phar create-project —--stability="dev" zendframework/skeleton-application path/to/insta.

Note: Another way to install the ZendSkeletonApplication is to wuse github. Go to
https://github.com/zendframework/ZendSkeletonApplication and click the Zip button. This will download a

file with a name like ZendSkeletonApplication-master. zip or similar.

Unzip this file into the directory where you keep all your vhosts and rename the resultant directory to
zf2-tutorial.

ZendSkeletonApplication is set up to use Composer (http://getcomposer.org) to resolve its dependencies. In this case,
the dependency is Zend Framework 2 itself.

To install Zend Framework 2 into our application we simply type:

php composer.phar self-update
php composer.phar install

from the zf2-tutorial folder. This takes a while. You should see an output like:

Installing dependencies from lock file
- Installing zendframework/zendframework (dev-master)
Cloning 18c8e223f070deb07c17543ed938b54542aa0ed8

Generating autoload files

Note: If you see this message:

[RuntimeException]
The process timed out.

then your connection was too slow to download the entire package in time, and composer timed out. To avoid this,
instead of running:

php composer.phar install

run instead:

COMPOSER_PROCESS TIMEOUT=5000 php composer.phar install

https://github.com/zendframework/ZendSkeletonApplication
https://github.com/
http://getcomposer.org
https://github.com/zendframework/ZendSkeletonApplication
http://getcomposer.org

Zend Framework 2 Documentation, Release 2.3.5

Note: For windows users with wamp:

1. Install composer for windows Check composer is properly installed by running

1 composer

2. Install git for windows. Also need to add git path in windows environment variable Check git is properly
installed by running

1 git

3. Now install zf2 using command

I composer create-project -s dev zendframework/skeleton-application path/to/install

We can now move on to the web server setup.

4.1 Using the Apache Web Server

You now need to create an Apache virtual host for the application and edit your hosts file so that
http://zf2-tutorial.localhost will serve index.php from the zf2-tutorial/public directory.

Setting up the virtual host is usually done within httpd. conf orextra/httpd-vhosts.conf. If you are using
httpd-vhosts.conf, ensure that this file is included by your main httpd. conf file. Some Linux distributions
(ex: Ubuntu) package Apache so that configuration files are stored in /et c/apache?2 and create one file per virtual
host inside folder /etc/apache2/sites—enabled. In this case, you would place the virtual host block below
into the file /etc/apache2/sites—enabled/zf2-tutorial.

Ensure that NameVirtualHost is defined and set to *:80 or similar, and then define a virtual host along these lines:

<VirtualHost x:80>
ServerName zf2-tutorial.localhost
DocumentRoot /path/to/zf2-tutorial/public
SetEnv APPLICATION_ENV "development"
<Directory /path/to/zf2-tutorial/public>
DirectoryIndex index.php
AllowOverride All
Order allow,deny
Allow from all
</Directory>
</VirtualHost>

Make sure that you update your /etc/hosts or c:\windows\system32\drivers\etc\hosts file so
that zf2-tutorial.localhost is mapped to 127.0.0.1. The website can then be accessed using
http://zf2-tutorial.localhost.

127.0.0.1 zf2-tutorial.localhost localhost

Restart Apache.

If you’ve done it correctly, it should look something like this:

10 Chapter 4. Getting started: A skeleton application

Zend Framework 2 Documentation, Release 2.3.5

= ZF2 Skeleton Application

&~ ' (D) zf2-tutorial.localhost/

Home

Welcome to Zend Framework 2

Congratulations! You have successfully installed the 7F2 Skeleton Application. You are currently running Zend Framework version
2.0.0betad. This skeleton can serve as a simple starting point for you to begin building your application on ZF2.

Fork Zend Framework 2 on GitHub »

Follow Development

Zend Framework 2 is under active development. If you are
interested in following the development of ZF2, there is a
special ZF2 portal on the official Zend Framework webiste
which provides links to the ZF2 wiki, dev blog, issue tracker,
and much more. This is a great resource for staying up to date

Discover Modules

The community is working on developing a community site to
serve as a repository and gallery for ZF2 modules. The project
is available on GitHub. The site is currently live and currently
centains a list of some of the modules already available for
ZF2.

Help & Support

If you need any help or support while developing with ZF2, you
may reach us via IRC: #zftalk.2 on Freenode. We'd love to hear
any guestions or feedback you may have regarding the beta
releases. Alternatively, you may subscribe and post questions
to the mailing lists.

with the latest developments!

) Ping us an IRC »
ZF2 Development Portal »

Explore ZF2 Modules »

© 2006 - 2012 by Zend Technologies Lid. All rights reserved.

To test that your . htaccess file is working, navigate to http://zf2-tutorial.localhost/1234 and you
should see this:

Z= ZF2 Skeleton Application

€« ' (D) zf2-tutorial.localhost/1234 ey

Home

A 404 error occurred

Page not found.
The requested URL could net be matched by routing.

© 2006 - 2012 by Zend Technologies Ltd. All rights reserved.

If you see a standard Apache 404 error, then you need to fix . htaccess usage before continuing. If you’re are using
IIS with the URL Rewrite Module, import the following:

RewriteCond %${REQUEST_FILENAME} !-f
RewriteRule ”~ index.php [NC,L]

You now have a working skeleton application and we can start adding the specifics for our application.

4.2 Using the Built-in PHP CLI Server

Alternatively if you are using PHP 5.4 or above you can use the built-in CLI server (cli-server). To do this, you just
start the server in the root directory:

4.2. Using the Built-in PHP CLI Server 11

20

21

22

23

24

25

26

Zend Framework 2 Documentation, Release 2.3.5

php -S 0.0.0.0:8080 -t public/ public/index.php

This will make the website available on port 8080 on all network interfaces, using public/index.php to handle
routing. This means the site is accessible via http://localhost:8080 or http://<your-local-IP>:8080.

If youve done it right, you should see the same result as with Apache above.

To test that your routing is working, navigate to http://localhost:8080/1234 and you should see the same error page as

with Apache above.

Note: The built-in CLI server is for development only.

4.3 Error reporting

Optionally, when using Apache, you can use the APPLICATION_ENV setting in your VirtualHost to let PHP
output all its errors to the browser. This can be useful during the development of your application.

Edit index.php from the zf2-tutorial/public/ directory and change it to the following:

<?php

J *k
* Display all errors when APPLICATION_ENV is development.
*/

if ($_SERVER[’/APPLICATION_ENV’] == ’development’) {

error_reporting (E_ALL) ;
ini_set ("display_errors", 1);

J *k

* This makes our life easier when dealing with paths. Everything is relative

* to the application root now.
*/
chdir (dirname (__DIR_));

// Decline static file requests back to the PHP built-in webserver

EE—

if (php_sapi_name() === ’'cli-server’
return false;

// Setup autoloading
require ’'init_autoloader.php’;

// Run the application!

&& is_file(__DIR__ . parse_url ($_SERVER[’REQUEST_URI'],

Zend\Mvc\Application::init (require ’config/application.config.php’)->run();

12

Chapter 4. Getting started: A skeleton application

PHP_UR!

http://localhost:8080
http:/
http://localhost:8080/1234

CHAPTER 5

Modules

Zend Framework 2 uses a module system to organise your main application-specific code within each module. The
Application module provided by the skeleton is used to provide bootstrapping, error and routing configuration to the
whole application. It is usually used to provide application level controllers for, say, the home page of an application,
but we are not going to use the default one provided in this tutorial as we want our album list to be the home page,
which will live in our own module.

We are going to put all our code into the Album module which will contain our controllers, models, forms and views,
along with configuration. Well also tweak the Application module as required.

Lets start with the directories required.

5.1 Setting up the Album module

Start by creating a directory called A1bum under module with the following subdirectories to hold the modules files:

zf2-tutorial/
/module
/Album
/config
/src
/Album
/Controller
/Form
/Model
/view
/album
/album

As you can see the Album module has separate directories for the different types of files we will have. The PHP
files that contain classes within the 21bum namespace live in the src/Album directory so that we can have multiple
namespaces within our module should we require it. The view directory also has a sub-folder called a1bum for our
modules view scripts.

In order to load and configure a module, Zend Framework 2 has a ModuleManager. This will look
for Module.php in the root of the module directory (module/Album) and expect to find a class called
Album\Module within it. That is, the classes within a given module will have the namespace of the modules
name, which is the directory name of the module.

Create Module.php in the Album module: Create a file called Module.php under
zf2-tutorial/module/Album:

13

Zend Framework 2 Documentation, Release 2.3.5

namespace Album;

use Zend\ModuleManager\Feature\AutoloaderProviderInterface;
use Zend\ModuleManager\Feature\ConfigProviderInterface;

class Module implements AutoloaderProviderInterface, ConfigProviderInterface

{
public function getAutoloaderConfig()

{
return array (
"Zend\Loader\ClassMapAutoloader’ => array (
__DIR . ’"/autoload_classmap.php’,

)
"Zend\Loader\StandardAutoloader’ => array (
"namespaces’ => array (
_ NAMESPACE__ => _ DIR__ . ’/src/’ . __NAMESPACE__ ,

public function getConfig()

{
return include __DIR__ . ’/config/module.config.php’;

}

The ModuleManager will call getAutoloaderConfig () and getConfig () automatically for us.

5.1.1 Autoloading files

Our getAutoloaderConfig () method returns an array that is compatible with ZF2s AutoloaderFactory.
We configure it so that we add a class map file to the ClassMapAutoloader and also add this modules namespace
to the StandardAutoloader. The standard autoloader requires a namespace and the path where to find the files
for that namespace. It is PSR-0 compliant and so classes map directly to files as per the PSR-0 rules.

As we are in development, we dont need to load files via the classmap, so we provide an empty array for the classmap
autoloader. Create a file called autoload_classmap.php under zf2-tutorial/module/Album:

return array();

As this is an empty array, whenever the autoloader looks for a class within the A1bum namespace, it will fall back to
the to StandardAutoloader for us.

Note: If you are using Composer, you could instead just create an empty getAutoloaderConfig() { } and
add to composer.json:

"autoload": {
"psr-0": { "Album": "module/Album/src/" }

by

If you go this way, then you need to run php composer.phar update to update the composer autoloading files.

14 Chapter 5. Modules

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

Zend Framework 2 Documentation, Release 2.3.5

5.2 Configuration

Having registered the autoloader, lets have a quick look at the getConfig () method in Album\Module. This
method simply loads the config/module.config.php file.

Create a file called module.config.php under zf2-tutorial/module/Album/config:

return array (
"controllers’ => array (
"invokables’ => array (
"Album\Controller\Album’ => ’"Album\Controller\AlbumController’,
)I
)V

"view_manager’ => array (
"template_path_stack’ => array (
"album’ => _ DIR . '/../view’,

)y
),
)i

The config information is passed to the relevant components by the ServiceManager. We need two ini-
tial sections: controllers and view_manager. The controllers section provides a list of all the con-
trollers provided by the module. We will need one controller, AlbumController, which well reference as
Album\Controller\Album. The controller key must be unique across all modules, so we prefix it with our
module name.

Within the view_manager section, we add our view directory to the TemplatePathStack configuration. This
will allow it to find the view scripts for the A1bum module that are stored in our view/ directory.

5.3 Informing the application about our new module

We now need to tell the ModuleManager that this new module exists. This is done in the applications
config/application.config.php file which is provided by the skeleton application. Update this file so
that its modules section contains the A1bum module as well, so the file now looks like this:

(Changes required are highlighted using comments.)

return array (

"modules’ => array (
"Application’,
"Album’, // <-— Add this line
) r
"module_listener_options’ => array(
"config_glob_paths’ => array (

"config/autoload/{, *.}{global,local}.php’,

)I

"module_paths’ => array (
" ./module’,
" ./vendor’,

)I

)!
)i

As you can see, we have added our A1bum module into the list of modules after the Application module.

We have now set up the module ready for putting our custom code into it.

5.2. Configuration 15

Zend Framework 2 Documentation, Release 2.3.5

16 Chapter 5. Modules

CHAPTER 6

Routing and controllers

We will build a very simple inventory system to display our album collection. The home page will list our collection
and allow us to add, edit and delete albums. Hence the following pages are required:

Page Description

Home This will display the list of albums and provide links to edit and delete them. Also, a link to enable
adding new albums will be provided.

Add new This page will provide a form for adding a new album.

album

Edit album | This page will provide a form for editing an album.

Delete This page will confirm that we want to delete an album and then delete it.

album

Before we set up our files, its important to understand how the framework expects the pages to be organised. Each page
of the application is known as an action and actions are grouped into controllers within modules. Hence, you would
generally group related actions into a controller; for instance, a news controller might have actions of current,
archived and view.

As we have four pages that all apply to albums, we will group them in a single controller AlbumController within

our Album module as four actions. The four actions will be:

Page Controller Action
Home AlbumController | index
Add new album | AlbumController | add
Edit album AlbumController | edit
Delete album AlbumController | delete

The mapping of a URL to a particular action is done using routes that are defined in the modules
module.config.php file. We will add a route for our album actions. This is the updated module config file
with the new code highlighted.

return array (

"controllers’ => array (
"invokables’ => array(

)y
)y

"Album\Controller\Album’

=> ’Album\Controller\AlbumController’,

// The following section is new and should be added to your file

"router’

=> array (

"routes’ => array (

"album’ => array (

"type’ => ’segment’,
"options’ => array (

17

Zend Framework 2 Documentation, Release 2.3.5

'view_manager’

"route’ => '’ /album[/:action] [/:id]"’,

"constraints’ => array(
"action’ => ' [a-zA-Z][a-zA-Z0-9_-1%"',
rid’ => "[0-9]+",

)I

"defaults’ => array (
"controller’ => ’"Album\Controller\Album’,
"action’ => ’index’,

)I

=> array (

"template_path_stack’ => array (
=> __DIR__ . "/../view’,

" album’
) ’
) 4
)i

The name of the route is album and has a type of segment. The segment route allows us to specify placeholders in
the URL pattern (route) that will be mapped to named parameters in the matched route. In this case, the route is
¢‘/album[/:action][/:id]*‘ which will match any URL that starts with /album. The next segment will be an optional
action name, and then finally the next segment will be mapped to an optional id. The square brackets indicate that a
segment is optional. The constraints section allows us to ensure that the characters within a segment are as expected,
so we have limited actions to starting with a letter and then subsequent characters only being alphanumeric, underscore
or hyphen. We also limit the id to a number.

This route allows us to have the following URLs:

URL Page Action
/album Home (list of albums) index
/album/add Add new album add
/album/edit /2 Edit album with an id of 2 edit
/album/delete/4 | Delete album with anid of 4 | delete
18 Chapter 6. Routing and controllers

CHAPTER 7

Create the controller

We are now ready to set up our controller. In Zend Framework 2, the controller is a class that is generally called
{Controller name}Controller. Note that {Controller name} must start with a capital letter. This
class lives in a file called {Controller name}Controller.php within the Controller directory for the
module. In our case that is module/Album/src/Album/Controller. Each action is a public method within
the controller class that is named {action name}Action. In this case {action name} should start with a
lower case letter.

Note: This is by convention. Zend Framework 2 doesnt provide many restrictions on controllers other
than that they must implement the Zend\Stdlib\Dispatchable interface. =~ The framework provides

two abstract classes that do this for us: Zend\Mvc\Controller\AbstractActionController
and Zend\Mvc\Controller\AbstractRestfulController. Well be using the stan-
dard AbstractActionController, but if youre intending to write a RESTful web service,
AbstractRestfulController may be useful.

Lets go ahead and create our controller class AlbumController.php at
zf2-tutorials/module/Album/src/Album/Controller:

namespace Album\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class AlbumController extends AbstractActionController
{

public function indexAction()

{

}

public function addAction ()
{
}

public function editAction()
{
}

public function deleteAction()
{
}

19

Zend Framework 2 Documentation, Release 2.3.5

Note: Make sure to register the new Album module in the “modules” section of your
config/application.config.php. You also have to provide a Module Class for the Album module

to be recognized by the MVC.

Note: We have already informed the module about our controller in the controller section of
module/Album/config/module.config.php.

We have now set up the four actions that we want to use. They wont work yet until we set up the views. The URLs for
each action are:

URL Method called

http://zf2-tutorial.localhost/album | Album\Controller\AlbumController: :indexA
http://zf2-tutorial.localhost/album/addbum\Controller\AlbumController: :addAct
http://zf2-tutorial.localhost/album/¢diltbum\Controller\AlbumController: :editAq
http://zf2-tutorial.localhost/album/dellgnen\Controller\AlbumController: ::deletq

We now have a working router and the actions are set up for each page of our application.

Its time to build the view and the model layer.

7.1 Initialise the view scripts

To integrate the view into our application all we need to do is create some view script files. These files will be
executed by the DefaultViewStrategy and will be passed any variables or view models that are returned from
the controller action method. These view scripts are stored in our modules views directory within a directory named
after the controller. Create these four empty files now:

* module/Album/view/album/album/index.phtml

* module/Album/view/album/album/add.phtml

* module/Album/view/album/album/edit.phtml

* module/Album/view/album/album/delete.phtml

We can now start filling everything in, starting with our database and models.

20 Chapter 7. Create the controller

ction
ion
tion
Action

CHAPTER 8

Database and models

8.1 The database

Now that we have the A1bum module set up with controller action methods and view scripts, it is time to look at the
model section of our application. Remember that the model is the part that deals with the applications core purpose
(the so-called business rules) and, in our case, deals with the database. We will make use of the Zend Framework class
Zend\Db\TableGateway\TableGateway which is used to find, insert, update and delete rows from a database
table.

We are going to use MySQL, via PHPs PDO driver, so create a database called zf2tutorial, and run these SQL
statements to create the album table with some data in it.

CREATE TABLE album (
id int (11) NOT NULL auto_increment,
artist varchar (100) NOT NULL,
title varchar (100) NOT NULL,
PRIMARY KEY (id)
)i
INSERT INTO album (artist, title)
VALUES (’'The Military Wives’, "In My Dreams’);
INSERT INTO album (artist, title)
VALUES (’Adele’, r217);
INSERT INTO album (artist, title)
VALUES (’Bruce Springsteen’, "Wrecking Ball (Deluxe)’);
INSERT INTO album (artist, title)
VALUES (" Lana Del Rey’, "Born To Die’);
INSERT INTO album (artist, title)
VALUES (’Gotye’, "Making Mirrors’);

(The test data chosen happens to be the Bestsellers on Amazon UK at the time of writing!)

We now have some data in a database and can write a very simple model for it.

8.2 The model files

Zend Framework does not provide a Zend\Model component because the model is your business logic and its up
to you to decide how you want it to work. There are many components that you can use for this depending on your
needs. One approach is to have model classes represent each entity in your application and then use mapper objects
that load and save entities to the database. Another is to use an Object-relational mapping (ORM) technology, such as
Doctrine or Propel.

21

22

23

24

25

26

27

Zend Framework 2 Documentation, Release 2.3.5

For this tutorial, we are going to create a very simple model by creating an AlbumTable class that uses the
Zend\Db\TableGateway\TableGateway class in which each album object is an A1lbum object (known as
an entity). This is an implementation of the Table Data Gateway design pattern to allow for interfacing with data
in a database table. Be aware though that the Table Data Gateway pattern can become limiting in larger sys-
tems. There is also a temptation to put database access code into controller action methods as these are exposed
by Zend\Db\TableGateway\AbstractTableGateway. Dont do this!

Lets start by creating a file called A1bum. php under module/Album/src/Album/Model:

namespace Album\Model;

class Album

{
public $id;
public Sartist;
public Stitle;

public function exchangeArray (Sdata)

{

Sthis->id = (lempty (Sdata[’id’])) ? S$datal[’id’] : null;
Sthis->artist = (!empty(Sdata[’artist’])) ? Sdata[’artist’] : null;
Sthis->title = (!empty($data[’title’])) ? S$data[’title’] : null;

}

Our Album entity object is a simple PHP class. In order to work with Zend\Dbs TableGateway class, we need
to implement the exchangeArray () method. This method simply copies the data from the passed in array to our

entitys properties. We will add an input filter for use with our form later.

Next, we create our AlbumTable.php file in module/Album/src/Album/Model directory like this:

namespace Album\Model;
use Zend\Db\TableGateway\TableGateway;

class AlbumTable
{

protected StableGateway;

public function __construct (TableGateway

{

Sthis->tableGateway = S$tableGateway;

public function fetchAll ()
{

SresultSet = Sthis->tableGateway->select ();
return SresultSet;

public function getAlbum($id)
{

$id = (int) Sid;

Srowset = Sthis->tableGateway->select (array(’id’
Srow = et->current () ;

if (!Srow) |

throw new \Exception("Could not find row

}

return Srow;

=> $id));

")

22

Chapter 8. Database and models

Zend Framework 2 Documentation, Release 2.3.5

public function saveAlbum (Album Salbum)
{
Sdata = array (
"artist’ => S$Salbum->artist,
"title’ => Salbum->title,

S = (int) Salbum->id;
if (Sid == 0) {

Sthis->tableGateway->insert ($Sdata);
} else {
if (Sthis->getAlbum($id)) {
Sthis->tableGateway->update (S$Sdata, array(’id’ => $id));
} else {

throw new \Exception(’Album id does not exist’);

public function deleteAlbum($id)
{

Sthis->tableGateway->delete (array(’id’ => (int) $id));
}

Theres a lot going on here. Firstly, we set the protected property $tableGateway to the TableGateway instance
passed in the constructor. We will use this to perform operations on the database table for our albums.

We then create some helper methods that our application will use to interface with the table gateway. fetchAll () re-
trieves all albums rows from the database as a ResultSet, getAlbum () retrieves a single row as an A1bum object,
saveAlbum () either creates a new row in the database or updates a row that already exists and deleteAlbum ()
removes the row completely. The code for each of these methods is, hopefully, self-explanatory.

8.3 Using ServiceManager to configure the table gateway and inject
into the AlbumTable

In order to always use the same instance of our AlbumTable, we will use the ServiceManager to define how to
create one. This is most easily done in the Module class where we create a method called get ServiceConfig ()
which is automatically called by the ModuleManager and applied to the ServiceManager. Well then be able to
retrieve it in our controller when we need it.

To configure the ServiceManager, we can either supply the name of the class to be instantiated or a factory
(closure or callback) that instantiates the object when the ServiceManager needs it. We start by implementing
getServiceConfig () to provide a factory that creates an AlbumTable. Add this method to the bottom of the
Module.php file in module/Album.

namespace Album;

// Add these import statements:

use Album\Model\Album;

use Album\Model\AlbumTable;

use Zend\Db\ResultSet\ResultSet;

use Zend\Db\TableGateway\TableGateway;

8.3. Using ServiceManager to configure the table gateway and inject into the AlbumTable 23

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

class Module

{
// getAutoloaderConfig() and getConfig() methods here

// Add this method:
public function getServiceConfig()
{
return array (
"factories’ => array(
"Album\Model\AlbumTable’ => function(Ssm) {
StableGateway = $sm->get (' AlbumTableGateway’) ;
Stable = new AlbumTable (StableGateway);
return Stable;
}I
"AlbumTableGateway’ => function ($sm) {
SdbAdapter = $sm->get (’ Zend\Db\Adapter\Adapter’);
SresultSetPrototype = new ResultSet();
SresultSetPrototype->setArrayObjectPrototype (new Album());

return new TableGateway (’album’, S$dbAdapter, null, SresultSetPrototype);

This method returns an array of factories that are all merged together by the ModuleManager be-
fore passing them to the ServiceManager. The factory for Album\Model\AlbumTable uses the
ServiceManager to create an AlbumTableGateway to pass to the AlbumTable. We also tell the
ServiceManager thatan AlbumTableGateway is created by getting a Zend\Db\Adapter\Adapter (also
from the ServiceManager) and using it to create a TableGateway object. The TableGateway is told to use
an Album object whenever it creates a new result row. The TableGateway classes use the prototype pattern for cre-
ation of result sets and entities. This means that instead of instantiating when required, the system clones a previously
instantiated object. See PHP Constructor Best Practices and the Prototype Pattern for more details.

Finally, we need to configure the ServiceManager so thatit knows how to geta Zend\Db\Adapter\Adapter.
This is done using a factory called Zend\Db\Adapter\AdapterServiceFactory which we can configure
within the merged config system. Zend Framework 2s ModuleManager merges all the configuration from each
modules module.config.php file and then merges in the files in config/autoload (x.global.php and
then x.local.php files). Well add our database configuration information to global .php which you should
commit to your version control system. You can use local.php (outside of the VCS) to store the credentials for
your database if you want to. Modify config/autoload/global.php (in the Zend Skeleton root, not inside
the Album module) with following code:

return array (
"db’ => array (
"driver’ => ’'pdo’,
"dsn’ => "mysql:dbname=zf2tutorial; host=localhost’,
"driver_options’ => array (
PDO: :MYSQL_ATTR_INIT_COMMAND => ’SET NAMES \’UTF8\’’
)I
)I
" service_manager’ => array (
"factories’ => array(
" Zend\Db\Adapter\Adapter’
=> ’Zzend\Db\Adapter\AdapterServiceFactory’,

24 Chapter 8. Database and models

http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern

Zend Framework 2 Documentation, Release 2.3.5

You should put your database credentials in config/autoload/local.php so that they are not in the git repos-
itory (as local.php is ignored):

return array (
"db’ => array (
"username’ => ’'YOUR USERNAME HERE’,
"password’ => ’'YOUR PASSWORD HERE’,
)!
)i

8.4 Back to the controller

Now that the ServiceManager can create an AlbumTab1le instance for us, we can add a method to the controller
to retrieve it. Add getAlbumTable () tothe AlbumController class:

// module/Album/src/Album/Controller/AlbumController.php:
public function getAlbumTable ()

{
if (!Sthis->albumTable) {
Ssm = $this->getServicelLocator();
Sthis->albumTable = $sm->get (' Album\Model\AlbumTable’) ;
}

return Sthis->albumTable;

}

You should also add:

protected SalbumTable;

to the top of the class.
We can now call getAlbumTable () from within our controller whenever we need to interact with our model.

If the service locator was configured correctly in Module.php, then we should get an instance of
Album\Model\AlbumTable when calling getAlbumTable ().

8.5 Listing albums

In order to list the albums, we need to retrieve them from the model and pass them to the view. To do this, we fill in
indexAction () within AlbumController. Update the AlbumControllers indexAction () like this:

// module/Album/src/Album/Controller/AlbumController.php:

/).
public function indexAction ()
{
return new ViewModel (array (
"albums’ => S$this->getAlbumTable ()->fetchAll (),
))i
}
V2R

With Zend Framework 2, in order to set variables in the view, we return a ViewModel instance where the first
parameter of the constructor is an array from the action containing data we need. These are then automatically passed
to the view script. The ViewModel object also allows us to change the view script that is used, but the default is to
use {controller name}/{action name}. We can now fill in the index.phtml view script:

8.4. Back to the controller 25

Zend Framework 2 Documentation, Release 2.3.5

1 <?php
2 // module/Album/view/album/album/index.phtml:

4 Stitle = "My albums’;

5 Sthis—->headTitle (Stitle);

6 2>

7 <hl><?php echo S$Sthis->escapeHtml (Stitle); ?></hl>

8 <p>

9 <a href="<?php echo $this->url (’album’, array(’action’=>"add’)); ?>">Add new album
10 </p>

11

12 <table class="table">

13 <tr>

14 <th>Title</th>

It <th>Artist</th>

16 <th> </th>

17 </tr>

18 <?php foreach (Salbums as Salbum) : ?>

19 <tr>

20 <td><?php echo Sthis->escapeHtml (Salbum->title); ?></td>

21 <td><?php echo S$this->escapeHtml (Salbum->artist); ?></td>

2 <td>

23 <a href="<?php echo S$this->url (’album’,

24 array (’action’=>"edit’, ’id’ => Salbum->id)); ?>">Edit
25 <a href="<?php echo $this->url (’album’,

26 array ('action’=>"delete’, ’"id’ => Salbum->id)); ?>">Delete
27 </td>

28 </tr>

2 <?php endforeach; 7>

30 </table>

The first thing we do is to set the title for the page (used in the layout) and also set the title for the <head> section
using the headTitle () view helper which will display in the browsers title bar. We then create a link to add a new
album.

The url () view helper is provided by Zend Framework 2 and is used to create the links we need. The first parameter
to url () is the route name we wish to use for construction of the URL, and the second parameter is an array of all
the variables to fit into the placeholders to use. In this case we use our album route which is set up to accept two
placeholder variables: action and id.

We iterate over the $albums that we assigned from the controller action. The Zend Framework 2 view system
automatically ensures that these variables are extracted into the scope of the view script, so that we dont have to worry
about prefixing them with $this—> as we used to have to do with Zend Framework 1; however you can do so if you
wish.

We then create a table to display each albums title and artist, and provide links to allow for editing and deleting the
record. A standard foreach: loop is used to iterate over the list of albums, and we use the alternate form using a
colon and endforeach; as it is easier to scan than to try and match up braces. Again, the url () view helper is
used to create the edit and delete links.

Note: We always use the escapeHtml () view helper to help protect ourselves from Cross Site Scripting (XSS)
vulnerabilities (see http://en.wikipedia.org/wiki/Cross-site_scripting).

If youopen http://zf2-tutorial.localhost/album you should see this:

26 Chapter 8. Database and models

http://en.wikipedia.org/wiki/Cross-site_scripting

Zend Framework 2 Documentation, Release 2.3.5

800 ‘.-! 7= My albums - ZF2 Skeletan /

&« C (@O zf2-tutorial.localhost/album ks

&
¥
VY

Skeleton Application Home

My albums

Add new album

Title Artist

In My Dreams The Military Wives Edit Delete
21 Adele Edit Delete
Wrecking Ball (Deluxe) Bruce Springsteen Edit Delete
Born To Die Lana Del Rey Edit Delete
Making Mirrors Gotye Edit Delete

© 2006 - 2012 by Zend Technologies Ltd. All rights reserved.

8.5. Listing albums 27

Zend Framework 2 Documentation, Release 2.3.5

28 Chapter 8. Database and models

T

CHAPTER 9

Styling and Translations

Weve picked up the SkeletonApplications styling, which is fine, but we need to change the title and remove the
copyright message.

The ZendSkeletonApplication is set up to use Zend\ I18ns translation functionality for all the text. It uses . po files
that live in module/Application/language, and you need to use poedit to change the text. Start poedit and
open module/Application/language/en_US.po. Click on Skeleton Application in the list of Original
strings and then type in Tutorial as the translation.

800 Poedit : fwww/dev/zf2-tutorial/medule/Application/language/en_US.po (modified)

@MW & 4

Open Save Update Fuzzy Comment

Original string Translation
i+ Skeleton Appliction Tutorial
Home

All rights reserved.
Welcome to %sZend Framework 2%s

Skeleton Appliction

Tutorial

3 % translated, 31 strings (0 fuzzy, 0 bad tokens, 30 not translated) Y

Press Save in the toolbar and poedit will create an en_US .mo file for us. If you find that no .mo file is gen-
erated, check Preferences -> Editor —-> Behavior and see if the checkbox marked Automatically
compile .mo file on save is checked.

To remove the copyright message, we need to edit the Application modules layout .phtml view script:

// module/Application/view/layout/layout.phtml:

// Remove this line:

<p>© 2005 - 2014 by Zend Technologies Ltd. <?php echo S$Sthis->translate(’All
rights reserved.’) ?></p>

The page now looks ever so slightly better now!

29

http://www.poedit.net/download.php

Zend Framework 2 Documentation, Release 2.3.5

e

00 ZF My albums - ZF2 Tutorial

<«

C (@O zf2-tutorial.localhost/album

Tutorial ~ Home

My albums

Add new album
Title
In My Dreams
21
Wrecking Ball (Deluxe)
Born To Die

Making Mirrors

Artist

The Military Wives
Adele

Bruce Springsteen
Lana Del Rey

Gotye

b
&
¥
VY

Edit Delete

Edit Delete

Edit Delete

Edit Delete

Edit Delete

30

Chapter 9. Styling and Translations

20

21

22

23

24

25

26

27

28

29

cHAPTER 10

Forms and actions

10.1 Adding new albums

We can now code up the functionality to add new albums. There are two bits to this part:

* Display a form for user to provide details

¢ Process the form submission and store to database

We use Zend\Form to do this. The Zend\Form component manages the form and, form validation, we add
a Zend\InputFilter to our Album entity. We start by creating a new class Album\Form\AlbumForm

that extends from Zend\Form\Form to define our form.

module/Album/src/Album/Form:

namespace Album\Form;

use Zend\Form\Form;

class AlbumForm extends Form

{

public function __construct ($Sname = null)

{

// we want to ignore the name passed
parent::__construct (’album’);

Sthis—->add (array (
"name’ => ’'id’,
"type’ => ’Hidden’,
))i
Sthis—>add (array (
"name’ => ’title’,
"type’ => 'Text’,
"options’ => array(
"label’ => ’"Title’,
)I
))i
Sthis—->add (array (
"name’ => ’'artist’,
"type’ => 'Text’,
"options’ => array(
"label’ => "Artist’,
)I
))i
Sthis—->add (array (

Create a file called AlbumForm.php in

31

20

21

22

23

24

25

26

27

28

Zend Framework 2 Documentation, Release 2.3.5

"name’ => ’submit’,
"type’ => 'Submit’,
"attributes’ => array(
"value’ => ’'Go’,
rid” => ’submitbutton’,

)

Within the constructor of AlbumForm we do several things. First, we set the name of the form as we call the parents
constructor. we create four form elements: the id, title, artist, and submit button. For each item we set various attributes
and options, including the label to be displayed.

We also need to set up validation for this form. In Zend Framework 2 this is done using an input filter, which can either
be standalone or defined within any class that implements the InputFilterAwareInterface interface, such as
a model entity. In our case, we are going to add the input filter to the Album class, which resides in the Album.php
file in module/Album/src/Album/Model:

namespace Album\Model;

// Add these import statements

use Zend\InputFilter\InputFilter;

use Zend\InputFilter\InputFilterAwarelInterface;
use Zend\InputFilter\InputFilterInterface;

class Album implements InputFilterAwareInterface
{
public $id;
public Sartist;
public Stitle;
protected SinputFilter; // <-— Add this variable

public function exchangeArray (Sdata)

{

Sthis->id (isset (Sdatal[’id" 1)) ? Sdatal[’id’] : null;
Sthis->artist = (isset(Sdata[’artist’])) ? Sdata[’artist’] : null;
Sthis->title = (isset ($datal[’title’])) ? Sdatal[’title’] : null;

// Add content to these methods:
public function setInputFilter (InputFilterInterface SinputFilter)

{

throw new \Exception ("Not used");

public function getInputFilter ()

{
if (!Sthis->inputFilter) {
SinputFilter = new InputFilter();

SinputFilter->add (array (

"name’ => ’id’,

"required’ => true,

"filters’ => array (
array (' name’ => ’'Int’),

),
)) i

32 Chapter 10. Forms and actions

40

41

42

43

44

45

46

47

48

49

50

51

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

Zend Framework 2 Documentation, Release 2.3.5

SinputFilter->add (array (

"name’ => ’Tartist’,

"required’ => true,

"filters’ => array(
array (' name’ => ’'StripTags’),
array (' name’ => ’'StringTrim’),

) r
"validators’ => array(
array (
"name’ => ’/StringLength’,
"options’ => array(
"encoding’ => "UTF-8’',
min’ =1,
max’ => 100,

SinputFilter->add (array (

"name’ => ’'title’,

"required’ => true,

"filters’ => array(
array (' name’ => ’StripTags’),
array (' name’ => ’'StringTrim’),

),
"validators’ => array (
array (
"name’ => ’StringlLength’,
"options’ => array (
"encoding’ => 'UTF-8',

"min’ =1,
"max’ => 100,
)I
)I
)I
)) i
Sthis—->inputFilter = $inputFilter;

return Sthis->inputFilter;
}

The InputFilterAwareInterface defines two methods: set InputFilter () and getInputFilter ().
We only need to implement get InputFilter () so we simply throw an exception in set InputFilter ().

Within get InputFilter (), we instantiate an InputFilter and then add the inputs that we require. We add
one input for each property that we wish to filter or validate. For the id field we add an Int filter as we only need
integers. For the text elements, we add two filters, St ripTags and StringTrim, to remove unwanted HTML and
unnecessary white space. We also set them to be required and add a St ringLength validator to ensure that the user
doesnt enter more characters than we can store into the database.

We now need to get the form to display and then process it on submission. This is done within the
AlbumControllers addAction():

10.1. Adding new albums 33

20

21

22

23

24

25

26

27

28

29

30

31

32

Zend Framework 2 Documentation, Release 2.3.5

// module/Album/src/Album/Controller/AlbumController.php:

VI
use Zend\Mvc\Controller\AbstractActionController;

use Zend\View\Model\ViewModel;

use Album\Model\Album; // <—— Add this import
use Album\Form\AlbumForm; // <—— Add this import
Y

// Add content to this method:
public function addAction ()

{

Sform = new AlbumForm();
Sform->get (’ submit’)->setValue ('Add’);

Srequest = S$this->getRequest () ;

if (Srequest->isPost()) {
Salbum = new Album();
Sform->setInputFilter (Salbum->getInputFilter());
Sform->setData (Srequest->getPost ());

if (Sform—->isvalid()) {
Salbum->exchangeArray ($sform->getData());
Sthis->getAlbumTable () —>saveAlbum ($album) ;

// Redirect to list of albums
return Sthis->redirect () —>toRoute (’album’);

}

return array(’ form’ => S$form);

/S

After adding the AlbumForm to the use list, we implement addAction (). Lets look at the addAction () code
in a little more detail:

Sform = new AlbumForm() ;
Sform->get (/ submit’)->setValue ('Add’);

We instantiate AlbumForm and set the label on the submit button to Add. We do this here as well want to re-use the
form when editing an album and will use a different label.

Srequest = $this->getRequest () ;
if (Srequest->isPost()) {
Salbum = new Album();

Sform->setInputFilter (Salbum->getInputFilter());
Sform->setData (Srequest—->getPost ());
if (Sform->isValid()) {

If the Request objects isPost () method is true, then the form has been submitted and so we set the forms
input filter from an album instance. We then set the posted data to the form and check to see if it is valid using the
isValid () member function of the form.

Salbum->exchangeArray ($Sform->getData ()) ;
Sthis->getAlbumTable () —>saveAlbum ($album) ;

If the form is valid, then we grab the data from the form and store to the model using saveAlbum ().

34 Chapter 10. Forms and actions

Zend Framework 2 Documentation, Release 2.3.5

// Redirect to list of albums
return Sthis->redirect () —>toRoute ("album’) ;

After we have saved the new album row, we redirect back to the list of albums using the Redirect controller plugin.

return array(’' form’ => S$form);

Finally, we return the variables that we want assigned to the view. In this case, just the form object. Note that Zend
Framework 2 also allows you to simply return an array containing the variables to be assigned to the view and it will
create a ViewModel behind the scenes for you. This saves a little typing.

We now need to render the form in the add.phtml view script:

<?php
// module/Album/view/album/album/add.phtml:

Stitle = "Add new album’;

Sthis—->headTitle (Stitle);

2>

<hl><?php echo $this->escapeHtml (Stitle); 2?></hl>

<?php

Sform->setAttribute (’action’, S$this->url(’album’, array(’action’ => ’"add’)));
Sform->prepare () ;

echo $this->form()->openTag (Sform);

echo $this->formHidden ($form->get ('1d’));
echo $this->formRow (S$Sform->get ('title’));
echo $this->formRow (Sform->get ("artist’));
echo $this->formSubmit ($form->get (’ submit’)) ;
echo Sthis->form()->closeTag();

Again, we display a title as before and then we render the form. Zend Framework provides some view helpers to make
this a little easier. The form () view helper has an openTag () and closeTag () method which we use to open
and close the form. Then for each element with a label, we can use formRow (), but for the two elements that are
standalone, we use formHidden () and formSubmit ().

800 / Z= Add new album - ZF2 Tutor

&= C (@O zf2-tutorial.localhost/album/add P e @ X

Tutorial ~ Home

Add new album

Artist

Title

10.1. Adding new albums 35

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

Alternatively, the process of rendering the form can be simplified by using the bundled formCollection view
helper. For example, in the view script above replace all the form-rendering echo statements with:

echo $Sthis->formCollection($form);

Note: You still need to call the openTag and closeTag methods of the form. You replace the other echo statements
with the call to formCollection, above.

This will iterate over the form structure, calling the appropriate label, element and error view helpers for each element,
but you still have to wrap formCollection($form) with the open and close form tags. This helps reduce the complexity
of your view script in situations where the default HTML rendering of the form is acceptable.

You should now be able to use the Add new album link on the home page of the application to add a new album record.

10.2 Editing an album

Editing an album is almost identical to adding one, so the code is very similar. This time we use editAction () in
the AlbumController:

// module/Album/src/Album/Controller/AlbumController.php:
V2

// Add content to this method:
public function editAction()
{
$id = (int) Sthis->params()->fromRoute (’id’, 0);
if (!sid) |
return S$this->redirect () ->toRoute (’album’, array (
"action’ => ’"add’

)) i

// Get the Album with the specified id. An exception is thrown
// 1f it cannot be found, in which case go to the index page.
try {

Salbum = S$this->getAlbumTable ()->getAlbum($id);
}
catch (\Exception Sex) {

return S$this->redirect () ->toRoute (’album’, array (

"action’ => ’index’

)) i

Sform = new AlbumForm() ;
Sform->bind(Salbum) ;
Sform->get (' submit’)->setAttribute (' value’, ’'Edit’);

Srequest = S$this->getRequest();

if (Srequest->isPost()) {
Sform->setInputFilter (Salbum->getInputFilter());
Sform->setData (Srequest->getPost ());

if (Sform—>isvValid()) {
Sthis->getAlbumTable () —>saveAlbum ($album) ;

// Redirect to list of albums
return S$this->redirect () ->toRoute (’album’);

36 Chapter 10. Forms and actions

40

41

42

43

44

45

46

47

Zend Framework 2 Documentation, Release 2.3.5

return array (
rid" => $id,
"form’ => S$form,

)i
Y/

This code should look comfortably familiar. Lets look at the differences from adding an album. Firstly, we look for
the 1d that is in the matched route and use it to load the album to be edited:

$id = (int) Sthis->params()->fromRoute (’id’, 0);
if (!Sid) |
return Sthis->redirect () ->toRoute (’album’, array (
"action’ => ’"add’
)) i

// Get the album with the specified id. An exception 1s thrown
// 1if it cannot be found, in which case go to the index page.
try {
Salbum = Sthis->getAlbumTable () ->getAlbum($id);
}
catch (\Exception Sex) {

return Sthis->redirect () ->toRoute (’album’, array (

"action’ => ’index’

)) i

}

params is a controller plugin that provides a convenient way to retrieve parameters from the matched route. We use
it to retrieve the id from the route we created in the modules module.config.php. If the id is zero, then we
redirect to the add action, otherwise, we continue by getting the album entity from the database.

We have to check to make sure that the Album with the specified id can actually be found. If it cannot, then the data
access method throws an exception. We catch that exception and re-route the user to the index page.

Sform = new AlbumForm() ;
Sform->bind (Salbum) ;
Sform->get (/ submit’)->setAttribute (' value’, 'Edit’);

The forms bind () method attaches the model to the form. This is used in two ways:
* When displaying the form, the initial values for each element are extracted from the model.
¢ After successful validation in isValid(), the data from the form is put back into the model.

These operations are done using a hydrator object. There are a number of hydrators, but the default one
is Zend\Stdlib\Hydrator\ArraySerializable which expects to find two methods in the model:
getArrayCopy () and exchangeArray (). We have already written exchangeArray () inour Album entity,
so just need to write getArrayCopy () :

// module/Album/src/Album/Model/Album.php:
//
public function exchangeArray ($Sdata)

{

Sthis—->id = (isset (Sdatal[’id’])) ? null;
Sthis->artist = (isset (Sdata[’artist’])) ? al[’artist’] : null;
Sthis->title = (isset(Sdatal[’title’])) ? al’title’] : null;

10.2. Editing an album 37

21

22

23

24

25

Zend Framework 2 Documentation, Release 2.3.5

// Add the following method:
public function getArrayCopy ()
{

return get_object_vars ($this);

/7

As a result of using bind () with its hydrator, we do not need to populate the forms data back into the $album as
thats already been done, so we can just call the mappers saveAlbum () to store the changes back to the database.

The view template, edit . phtml, looks very similar to the one for adding an album:

<?php
// module/Album/view/album/album/edit.phtml:

Stitle = "Edit album’;
Sthis->headTitle (Stitle);
2>

<hl><?php echo S$this->escapeHtml (Stitle); ?></hl>

<?php
Sform = $this->form;
Sform->setAttribute (’action’, S$this->url(
"album’,
array (
"action’ => ’edit’,
rid’ => Sthis->id,

)) i
Sform->prepare () ;

echo Sthis->form()->openTag(Sform);
echo $this->formHidden ($form->get ('1d’));

echo S$this->formRow (S$Sform->get ('title’));
echo $this->formRow (Sform->get ("artist’));
echo $this->formSubmit ($form->get (’ submit’));
echo Sthis->form()->closeTag();

The only changes are to use the Edit Album title and set the forms action to the edit action too.

You should now be able to edit albums.

10.3 Deleting an album

To round out our application, we need to add deletion. We have a Delete link next to each album on our list page and
the naive approach would be to do a delete when its clicked. This would be wrong. Remembering our HTTP spec, we
recall that you shouldnt do an irreversible action using GET and should use POST instead.

We shall show a confirmation form when the user clicks delete and if they then click yes, we will do the deletion. As
the form is trivial, well code it directly into our view (Zend\Form is, after all, optional!).

Lets start with the action code in AlbumController: :deleteAction():

// module/Album/src/Album/Controller/AlbumController.php:

S/
// Add content to the following method:

38 Chapter 10. Forms and actions

20

21

22

23

24

25

26

27

28

29

20

21

22

23

24

25

Zend Framework 2 Documentation, Release 2.3.5

public function deleteAction()

{

$id = (int) Sthis->params()->fromRoute(’id’, 0);

if (!sid) |

return Sthis->redirect () —>toRoute ("album’) ;

Srequest = S$this->getRequest();
if (Srequest->isPost()) {
Sdel = Srequest->getPost ('del’, 'No’);
if (Sdel == ’'Yes’) {
Sid = (int) Srequest->getPost (’id’);

Sthis->getAlbumTable () —>deleteAlbum($id) ;

// Redirect to 1list of albums

return Sthis->redirect () —>toRoute (’album’);

return array (

rid’ > $id,

"album’ => $this->getAlbumTable () ->getAlbum(S$id)

)i

S/

As before, we get the id from the matched route, and check the request objects 1sPost () to determine whether
to show the confirmation page or to delete the album. We use the table object to delete the row using the
deleteAlbum () method and then redirect back the list of albums. If the request is not a POST, then we retrieve the

correct database record and assign to the view, along with the id.
The view script is a simple form:

<?php
// module/Album/view/album/album/delete.phtml:

Stitle = ’'Delete album’;

Sthis->headTitle (Stitle);

2>

<hl><?php echo S$this->escapeHtml (Stitle); ?></hl>

<p>Are you sure that you want to delete
" <?php echo S$this->escapeHtml (Salbum->title);
" <?php echo S$this->escapeHtml (Salbum->artist);
</p>

<?php

Surl = Sthis->url(’album’, array(
"action’ => ’delete’,
rid’ => Sthis->id,

)) i

2>

<form action="<?php echo Surl; ?>" method="post">
<div>

?>" by
>

<input type="hidden" name="id" value="<?php echo (int)

<input type="submit" name="del" value="Yes" />
<input type="submit" name="del" value="No" />
</div>
</form>

Salbum->id;

osn

/>

10.3. Deleting an album

39

Zend Framework 2 Documentation, Release 2.3.5

In this script, we display a confirmation message to the user and then a form with “Yes” and “No” buttons. In the
action, we checked specifically for the Yes value when doing the deletion.

10.4 Ensuring that the home page displays the list of albums

One final point. At the moment, the home page, http://zf2-tutorial.localhost/ doesnt display the list
of albums.

This is due to a route set up in the Application modules module.config.php. To change it, open
module/Application/config/module.config.php and find the home route:

"home’ => array (
"type’ => ’Zend\Mvc\Router\Http\Literal’,
"options’ => array (
"route’ = /",
"defaults’ => array (
"controller’ => ’"Application\Controller\Index’,
"action’ => ’index’,

)y
),

Change the controller from Application\Controller\Index to Album\Controller\Album:

"home’ => array (
"type’ => ’Zend\Mvc\Router\Http\Literal’,
"options’ => array (
"route’ = /",
"defaults’ => array (
"controller’ => ’Album\Controller\Album’, // <-- change here
"action’ => ’index’,

),
)l

Thats it - you now have a fully working application!

40 Chapter 10. Forms and actions

CHAPTER 11

Conclusion

This concludes our brief look at building a simple, but fully functional, MVC application using Zend Framework 2.
In this tutorial we but briefly touched quite a number of different parts of the framework.

The most important part of applications built with Zend Framework 2 are the modules, the building blocks of any MVC
ZF2 application.

To ease the work with dependencies inside our applications, we use the service manager.
To be able to map a request to controllers and their actions, we use routes.

Data persistence, in most cases, includes using Zend\Db to communicate with one of the databases. Input data is
filtered and validated with input filters and together with Zend\Form they provide a strong bridge between the domain
model and the view layer.

Zend\View is responsible for the View in the MVC stack, together with a vast amount of view helpers.

41

Zend Framework 2 Documentation, Release 2.3.5

42 Chapter 11. Conclusion

CHAPTER 12

Introducing our first “Blog” Module

Now that we know about the basics of the Zend Framework 2 Skeleton Application, let’s continue and create our very
own module. We will create a module named “Blog”. This module will display a list of database entries that represent
a single blog post. Each post will have three properties: id, text and title. We will create forms to enter new
posts into our database and to edit existing posts. Furthermore we will do so by using best-practices throughout the
whole QuickStart.

43

Zend Framework 2 Documentation, Release 2.3.5

44 Chapter 12. Introducing our first “Blog” Module

R S o

© ® N v R W N —

CHAPTER 13

Writing a new Module

Let’s start by creating a new folder under the /module directory called Blog.

To be recognized as a module by the ModuleManager all we need to do is create a PHP class named Module under
our module’s namespace, which is B1og. Create the file /module/Blog/Module.php

<?php
// Filename: /module/Blog/Module.php
namespace Blog;

class Module
{
}

We now have a module that can be detected by ZF2s ModuleManager. Let’s add this module to our application.
Although our module doesn’t do anything yet, just having the Module.php class allows it to be loaded by ZF2s
ModuleManager. To do this, add an entry for B1og to the modules array inside the main application config file at
/config/application.config.php:

<?php
// Filename: /config/application.config.php
return array (
"modules’ => array (
"Application’,
"Blog’
) 4

VY2
)i

If you refresh your application you should see no change at all (but also no errors).

At this point it’s worth taking a step back to discuss what modules are for. In short, a module is an encapsulated set of
features for your application. A module might add features to the application that you can see, like our Blog module;
or it might provide background functionality for other modules in the application to use, such as interacting with a
third party API.

Organizing your code into modules makes it easier for you to reuse functionality in other application, or to use modules
written by the community.

45

Zend Framework 2 Documentation, Release 2.3.5

46 Chapter 13. Writing a new Module

CHAPTER 14

Configuring the Module

The next thing we’re going to do is add a route to our application so that our module can be accessed through the
URL localhost:8080/blog. We do this by adding router configuration to our module, but first we need to let
the ModuleManager know that our module has configuration that it needs to load.

This is done by adding a getConfig () function to the Module class that returns the configuration. (This function
is defined in the ConfigProviderInterface although actually implementing this interface in the module class
is optional.) This function should return either an array or a Traversable object. Continue by editing your
/module/Blog/Module.php:

<?php
// Filename: /module/Blog/Module.php
namespace Blog;

use Zend\ModuleManager\Feature\ConfigProviderInterface;

class Module implements ConfigProviderInterface

{
public function getConfig()

{

return array();

}

With this our Module is now able to be configured. Configuration files can become quite big though and
keeping everything inside the getConfig() function won’t be optimal. To help keep our project or-
ganized we’re going to put our array configuration in a separate file. Go ahead and create this file at
/module/Blog/config/module.config.php:

<?php
// Filename: /module/Blog/config/module.config.php
return array();

Now we will rewrite the getConfig () function to include this newly created file instead of directly returning the
array.

<?php
// Filename: /module/Blog/Module.php
namespace Blog;

use Zend\ModuleManager\Feature\ConfigProviderInterface;

class Module implements ConfigProviderInterface

{

47

20

21

22

23

24

25

Zend Framework 2 Documentation, Release 2.3.5

public function getConfig ()
{

return include __ DIR . "/config/module.config.php’;

Reload your application and you’ll see that everything remains as it was. Next we add the new route to our configura-
tion file:

<?php
// Filename: /module/Blog/config/module.config.php
return array (
// This lines opens the configuration for the RouteManager
"router’ => array (
// Open configuration for all possible routes
"routes’ => array (
// Define a new route called "post"
"post’ => array(
// Define the routes type to be "Zend\Mvc\Router\Http\Literal", which is basically
"type’ => ’literal’,
// Configure the route itself
"options’ => array (
// Listen to "/blog" as uri
"route’ => ' /blog’,
// Define default controller and action to be called when this route is matched
"defaults’ => array (
"controller’ => 'Blog\Controller\List’,
"action’ => ’index’,

)i

We’ve now created a route called blog that listens to the URL localhost:8080/blog. Whenever someone
accesses this route, the indexAction () function of the class Blog\Controller\List will be executed. How-
ever, this controller does not exist yet, so if you reload the page you will see this error message:

A 404 error occurred
Page not found.
The requested controller could not be mapped to an existing controller class.

Controller:
Blog\Controller\List (resolves to invalid controller class or alias: Blog\Controller\List)
No Exception available

We now need to tell our module where to find this controller named Blog\Controller\List.
To achieve this we have to add this key to the controllers configuration key inside your
/module/Blog/config/module.config.php.

<?php
// Filename: /module/Blog/config/module.config.php
return array (
"controllers’ => array (
"invokables’ => array (
"Blog\Controller\List’ => ’Blog\Controller\ListController’

48 Chapter 14. Configuring the Module

20

21

22

23

24

25

26

27

28

29

31

32

33

34

36

37

38

Zend Framework 2 Documentation, Release 2.3.5

"router’ => array(/#x Route Configuration x/)

)i

This configuration defines Blog\Controller\List as an alias for the Li st Controller under the namespace
Blog\Controller. Reloading the page should then give you:

(!) Fatal error: Class ’'Blog\Controller\ListController’ not found in {libPath}/Zend/ServiceManage:

This error tells us that the application knows what class to load, but not where to find it. To fix this, we need to configure
autoloading for our Module. Autoloading is a process to allow PHP to automatically load classes on demand. For our
Module we set this up by adding a getAutoloaderConfig () function to our Module class. (This function is
defined in the AutoloaderProviderInterface, although the presence of the function is enough, actually implementing
the interface is optional.)

<?php
// Filename: /module/Blog/Module.php
namespace Blog;

use Zend\ModuleManager\Feature\AutoloaderProviderInterface;
use Zend\ModuleManager\Feature\ConfigProviderInterface;

class Module implements
AutoloaderProviderInterface,
ConfigProviderInterface

J ko
* Return an array for passing to Zend\Loader\AutoloaderFactory.
*
* @return array
*/
public function getAutoloaderConfig()
{
return array (
" Zend\Loader\StandardAutoloader’ => array (

"namespaces’ => array (
// Autoload all classes from namespace ’‘Blog’ from ’/module/Blog/src/Blog’
_ NAMESPACE___ => _DIR__ . ’/src/’ . _ NAMESPACE ,

VEE:
* Returns configuration to merge with application configuration
*
* @return array|\Traversable
*/
public function getConfig()

{
return include __DIR . "/config/module.config.php’;

}

Now this looks like a lot of change but don’t be afraid. We’ve added an get AutoloaderConfig () function which
provides configuration for the Zend\Loader\StandardAutoloader. This configuration tells the application
that classes in __ NAMESPACE___ (Blog) can be found inside _ DIR___ . ' /src/’ . _ NAMESPACE_
(/module/Blog/src/Blog).

The Zend\Loader\StandardAutoloader uses a PHP community driven standard called PSR-

49

http://www.php.net/manual/en/language.oop5.autoload.php
https://github.com/zendframework/zf2/:current_branch/library/Zend/ModuleManager/Feature/AutoloaderProviderInterface.php

Zend Framework 2 Documentation, Release 2.3.5

0 <https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md>*_. Amongst other things,
this standard defines a way for PHP to map class names to the file system. So with this config-
ured, the application knows that our Blog\Controller\ListController class should exist at
/module/Blog/src/Blog/Controller/ListController.php.

If you refresh the browser now you’ll see the same error, as even though we’ve configured the autoloader, we still need
to create the controller class. Let’s create this file now:

<?php
// Filename: /module/Blog/src/Blog/Controller/ListController.php
namespace Blog\Controller;

class ListController
{
}

Reloading the page now will finally result into a new screen. The new error message looks like this:

A 404 error occurred
Page not found.
The requested controller was not dispatchable.

Controller:
Blog\Controller\List (resolves to invalid controller class or alias: Blog\Controller\List)

Additional information:
Zend\Mvc\Exception\InvalidControllerException

File:

{libraryPath}/Zend/Mvc/Controller/ControllerManager.php: {lineNumber}

Message:

Controller of type Blog\Controller\ListController is invalid; must implement Zend\Stdlib\Dispatchab.

This happens because our controller must implement ZendStdlibDispatchablelnterface in order to be ‘dispatched’
(or run) by ZendFramework’s MVC layer. ZendFramework provides some base controller implementation of it with
AbstractActionController, which we are going to use. Let’s modify our controller now:

<?php
// Filename: /module/Blog/src/Blog/Controller/ListController.php
namespace Blog\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class ListController extends AbstractActionController
{
}

It’s now time for another refresh of the site. You should now see a new error message:

An error occurred
An error occurred during execution; please try again later.

Additional information:
Zend\View\Exception\RuntimeException

File:

{libraryPath}/library/Zend/View/Renderer/PhpRenderer.php: {lineNumber}

Message:

Zend\View\Renderer\PhpRenderer: :render: Unable to render template "blog/list/index"; resolver could

50 Chapter 14. Configuring the Module

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/zendframework/zf2/:current_branch/library/Zend/Stdlib/DispatchableInterface.php
https://github.com/zendframework/zf2/:current_branch/library/Zend/Mvc/Controller/AbstractActionController.php

Zend Framework 2 Documentation, Release 2.3.5

Now the application tells you that a view template-file can not be rendered, which is to be expected as we’ve not created
it yet. The application is expecting it to be at /module/Blog/view/blog/list/index.phtml. Create this
file and add some dummy content to it:

<!-- Filename: /module/Blog/view/blog/list/index.phtml —->
<hl>Blog\ListController::indexAction () </h1l>

Before we continue let us quickly take a look at where we placed this file. Note that view files are found
within the /view subdirectory, not /src as they are not PHP class files, but template files for rendering
HTML. The following path however deserves some explanation but it’s very simple. First we have the lower-
cased namespace. Followed by the lowercased controller name without the appendix ‘controller’ and lastly comes
the name of the action that we are accessing, again without the appendix ‘action’. All in all it looks like this:
/view/{namespace}/{controller}/{action}.phtml. This has become a community standard but can
potentionally be changed by you at any time.

However creating this file alone is not enough and this brings as to the final topic of this part of the QuickStart.
We need to let the application know where to look for view files. We do this within our modules configuration file
module.config.php.

<?php
// Filename: /module/Blog/config/module.config.php
return array (
’"view_manager’ => array (
"template_path_stack’ => array(
_DIR . '"/../view’,
)I
)I
"controllers’ => array(/++ Controller Configuration #*/),
" router’ => array(/+* Route Configuration =/)

)

The above configuration tells the application that the folder /module/Blog/view has view files in it that match
the above described default scheme. It is important to note that with this you can not only ship view files for your
module but you can also overwrite view files from other modules.

Reload your site now. Finally we are at a point where we see something different than an error being displayed.
Congratulations, not only have you created a simple “Hello World” style module, you also learned about many error
messages and their causes. If we didn’t exhaust you too much, continue with our QuickStart and let’s create a module
that actually does something.

51

Zend Framework 2 Documentation, Release 2.3.5

52 Chapter 14. Configuring the Module

CHAPTER 15

Introducing Services and the ServiceManager

In the previous chapter we’ve learned how to create a simple “Hello World” Application in Zend Framework 2. This is a
good start and easy to understand but the application itself doesn’t really do anything. In this chapter we will introduce
you into the concept of Services and with this the introduction to Zend\ServiceManager\ServiceManager.

53

Zend Framework 2 Documentation, Release 2.3.5

54 Chapter 15. Introducing Services and the ServiceManager

CHAPTER 16

What is a Service?

A Service is an object that executes complex application logic. It’s the part of the application that wires all difficult
stuff together and gives you easy to understand results.

For what we’re trying to accomplish with our B1og-Module this means that we want to have a Service that will give
us the data that we want. The Service will get it’s data from some source and when writing the Service we don’t really
care about what the source actually is. The Service will be written against an Interface that we define and that
future Data-Providers have to implement.

55

Zend Framework 2 Documentation, Release 2.3.5

56 Chapter 16. What is a Service?

CHAPTER 17

Writing the PostService

When writing a Service it is a common best-practice to define an Interface first. Interfaces are a good way
to ensure that other programmers can easily build extensions for our Services using their own implementations. In
other words, they can write Services that have the same function names but internally do completely different things
but have the same specified result.

In our case we want to create a PostService. This means first we are going to define a
PostServicelInterface. The task of our Service is to provide us with data of our blog posts. For now we
are going to focus on the read-only side of things. We will define a function that will give us all posts and we will
define a function that will give us a single post.

Let’s start by creating the Interface at /module/Blog/src/Blog/Service/PostServiceInterface.php

<?php
// Filename: /module/Blog/src/Blog/Service/PostServiceInterface.php
namespace Blog\Service;

use Blog\Model\PostInterface;
interface PostServicelInterface

{
J ok k

* Should return a set of all blog posts that we can iterate over. Single entries of the array

* implementing \Blog\Model\PostInterface
*
* @return array|PostInterfacel[]
*/
public function findAllPosts();

J ko
* Should return a single blog post
*
* @param int S$id Identifier of the Post that should be returned
* @return PostInterface
*/

public function findPost ($id);

}

As you can see we define two functions. The first being findAl11Posts () that is supposed to return all posts and
the second one being findPost ($id) thatis supposed to return the post matching the given identifier $id. What’s
new in here is the fact that we actually define a return value that doesn’t exist yet. We make the assumption that the
return value all in all are of type Blog\Model\PostInterface. We will define this class at a later point and for
now we simply create the Post Service first.

57

19

20

21

22

Zend Framework 2 Documentation, Release 2.3.5

Create the class PostService at /module/Blog/src/Blog/Service/PostService.php, be sure to
implement the PostServiceInterface and its required functions (we will fill in these functions later). You
then should have a class that looks like the following:

<?php

// Filename:

namespace Blog\Service;

class PostService implements PostServicelInterface

{

J ok k

*

*/

{@inheritDoc}

public function findAllPosts()

{

// TODO:

Implement findAllPosts () method.

VEz:
* {@inheritDoc}
*/
public function findPost ($id)
{
// TODO: Implement findPost () method.

/module/Blog/src/Blog/Service/PostService.php

58

Chapter 17. Writing the PostService

20

21

22

23

24

25

26

27

2

3

CHAPTER 18

Writing the required Model Files

Since our PostService will return Models, we should create them, too. Be sure to write an
Interface for the Model first! Let’s create /module/Blog/src/Blog/Model /PostInterface.php and
/module/Blog/src/Blog/Model /Post .php. First the Post Interface:

<?php
// Filename: /module/Blog/src/Blog/Model/PostInterface.php
namespace Blog\Model;

interface PostInterface

{
J ok k
* Will return the ID of the blog post
*
* @return int
*/
public function getId();

J ok k
* Will return the TITLE of the blog post
*
* @return string
*/
public function getTitle();

J ko
* Will return the TEXT of the blog post
*
* @return string
*/
public function getText ();
}

Notice that we only created getter-functions here. This is because right now we don’t bother how the data gets inside
the Post-class. All we care for is that we’re able to access the properties through these getter-functions.

And now we’ll create the appropriate Model file associated with the interface. Make sure to set the required class
properties and fill the getter functions defined by our Post Interface with some useful content. Even if our
interface doesn’t care about setter functions we will write them as we will fill our class with data through these. You
then should have a class that looks like the following:

<?php
// Filename: /module/Blog/src/Blog/Model/Post.php
namespace Blog\Model;

59

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Zend Framework 2 Documentation, Release 2.3.5

class Post implements PostInterface
{
Ve
* @var int
*/
protected $id;

J ko
* @var string
*/

protected Stitle;

J ok k
* @var string
*/

protected Stext;

Ve

* {@inheritDoc}

*/
public function getId()
{

return Sthis->id;

VEx:
* @param int $id
*/
public function setId($id)
{
Sthis->id = $id;

J ok k

* {@inheritDoc}

*/
public function getTitle()
{

return Sthis->title;

Ve
* @param string Stitle
*/
public function setTitle(Stitle)

{
Sthis—->title = Stitle;

J ok *

* {@inheritDoc}

*/
public function getText ()
{

return Sthis->text;

60

Chapter 18. Writing the required Model Files

62

63

65

66

67

68

69

Zend Framework 2 Documentation, Release 2.3.5

VS
* @param string Stext

public function setText (Stext)

{

*/

Sthis->text

61

Zend Framework 2 Documentation, Release 2.3.5

62 Chapter 18. Writing the required Model Files

20

21

22

23

24

25

26

27

28

29

CHAPTER 19

Bringing Life into our PostService

Now that we have our Model files in place we can actually bring life into our PostService class. To keep the
Service-Layer easy to understand for now we will only return some hard-coded content from our PostService
class directly. Create a property inside the Post Service called $data and make this an array of our Model type.
Edit Post Service like this:

<?php
// Filename: /module/Blog/src/Blog/Service/PostService.php
namespace Blog\Service;

class PostService implements PostServicelnterface

{

protected $data = array(

array (

rid’ => 1,

"title’ => ’'Hello World #1',

"text’ => 'This is our first blog post!’
)I
array (

rid’ = 2,

"title’ => ’'Hello World #2',

"text’ => 'This is our second blog post!’
)I
array (

rid’ => 3,

"title’ => 'Hello World #3',
"text’ => 'This is our third blog post!’

)y

array (

rid’ => 4,

"title’ => ’'Hello World #4',

"text’ => 'This is our fourth blog post!’
) 4
array (

rid’ => 5,

"title’ => ’'Hello World #5',
"text’ => 'This is our fifth blog post!’

)

J ok *
* {@inheritDoc}
*/
public function findAllPosts()

63

39
40
41
2
43
44
45
46
47
48
49

50

20
21
2
23
24
25
2
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
)
43

44

Zend Framework 2 Documentation, Release 2.3.5

// TODO: Implement findAllPosts () method.

J ok

* {@inheritDoc}

*/
public function findPost ($id)
{

// TODO: Implement findPost () method.

After we now have some data, let’s modify our findx* () functions to return the appropriate model files:

<?php

// Filename: /module/Blog/src/Blog/Service/PostService.php

namespace Blog\Service;

use Blog\Model\Post;

class PostService implements PostServiceInterface

{
protected Sdata = array(

array (
rid’ => 1,
"title’ => ’"Hello World
"text’ => 'This is our
)I
array (
rid’ => 2,
"title’ => "Hello World
"text’ => 'This is our
)I
array (
rid’ => 3,
"title’ => ’"Hello World
"text’ => 'This is our
)I
array (
rid’ => 4,
"title’ => ’'Hello World
"text’ => 'This is our
)I
array (
rid’ => 5,
"title’ => ’'Hello World
"text’ => 'This is our
)
)
Ve
* {@inheritDoc}
*/

public function findAllPosts()

{
SallPosts = array();

#17,
first blog post!’

#27,
second blog post!’

#37,
third blog post!’

#47,
fourth blog post!’

#57,
fifth blog post!’

foreach ($this->data as $index => Spost) {

64

Chapter 19. Bringing Life into our PostService

45

46

47

48

49

Zend Framework 2 Documentation, Release 2.3.5

SallPosts[] = Sthis->findPost ($index) ;
}
return SallPosts;
}
J ok *
* {@inheritDoc}
*/
public function findPost ($id)
{
SpostData = Sthis->data[$id];
Smodel = new Post();
Smodel->setId($postbhatal’1d’]);
S ->setTitle stData[’title’1);
Smodel->setText (SpostDatal[’text’]);
return Smodel;
}

As you can see, both our functions now have appropriate return values. Please note that from a technical point of view
the current implementation is far from perfect. We will improve this Service a lot in the future but for now we have a

working Service that is able to give us some data in a way that is defined by our Post ServiceInterface.

65

Zend Framework 2 Documentation, Release 2.3.5

66 Chapter 19. Bringing Life into our PostService

CHAPTER 20

Bringing the Service into the Controller

Now that we have our Post Service written, we want to get access to this Service in our Controllers. For this task
we will step foot into a new topic called “Dependency Injection”, short “DI”.

When we’re talking about dependency injection we’re talking about a way to get dependencies into our classes. The
most common form, “Constructor Injection”, is used for all dependencies that are required by a class at all times.

In our case we want to have our Blog-Modules ListController somehow interact with our Post Service. This
means that the class PostService is a dependency of the class ListController. Without the PostService
our ListController will not be able to function properly. To make sure that our ListController will always
get the appropriate dependency, we will first define the dependency inside the ListControllers constructor
function __construct (). Go on and modify the ListController like this:

<?php
// Filename: /module/Blog/src/Blog/Controller/ListController.php
namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Mvc\Controller\AbstractActionController;

class ListController extends AbstractActionController
{
J ok k
* @var \Blog\Service\PostServicelInterface
*/
protected SpostService;

public function __construct (PostServiceInterface ¢

{

Sthis->postService = Sp

}

As you can see our __construct () function now has a required argument. We will not be able to call this class
anymore without passing it an instance of a class that matches our defined Post ServiceInterface. If you were
to go back to your browser and reload your project with the url 1localhost:8080/blog, you'd see the following
error message:

(!) Catchable fatal error: Argument 1 passed to Blog\Controller\ListController::__ construct ()
must be an instance of Blog\Service\PostServicelInterface, none given,
called in {libraryPath}\Zend\ServiceManager\AbstractPluginManager.php on line {lineNumber}
and defined in \module\Blog\src\Blog\Controller\ListController.php on line 15

And this error message is expected. It tells you exactly that our ListController expects to be passed an im-

67

Zend Framework 2 Documentation, Release 2.3.5

plementation of the PostServiceInterface. So how do we make sure that our ListController will
receive such an implementation? To solve this, we need to tell the application how to create instances of the
Blog\Controller\ListController. If you remember back to when we created the controller, we added
an entry to the invokables array in the module config:

<?php
// Filename: /module/Blog/config/module.config.php
return array (
"view_manager’ => array(/++ ViewManager Config =*/),
"controllers’ => array (
"invokables’ => array(
"Blog\Controller\List’ => ’'Blog\Controller\ListController’

),
"router’ => array(/#x Router Config x/)

)i

An invokable is a class that can be constructed without any arguments. Since our
Blog\Controller\ListController now has a required argument, we need to change this. The
ControllerManager, which is responsible for instantiating controllers, also support using factories.
A factory is a class that creates instances of another class. We’ll now create one for our ListController.
Let’s modify our configuration like this:

<?php
// Filename: /module/Blog/config/module.config.php
return array (
"view_manager’ => array(/++ ViewManager Config x/),
"controllers’ => array (
"factories’ => array(
"Blog\Controller\List’ => ’'Blog\Factory\ListControllerFactory’

),

"router’ => array(/+* Router Config */)

)i

As you can see we no longer have the key invokables, instead we now have the key factories.
Furthermore the value of our controller name Blog\Controller\List has been changed to not
match the class Blog\Controller\ListController directly but to rather call a class called
Blog\Factory\ListControllerFactory. If you refresh your browser you’ll see a different error message:

An error occurred
An error occurred during execution; please try again later.

Additional information:
Zend\ServiceManager\Exception\ServiceNotCreatedException

File:
{libraryPath}\Zend\ServiceManager\AbstractPluginManager.php: {lineNumber}

Message:
While attempting to create blogcontrollerlist (alias: Blog\Controller\List) an invalid factory was re

This message should be quite easy to understand. The Zend\Mvc\Controller\ControllerManager is ac-
cessing Blog\Controller\List, which internally is saved as blogcontrollerlist. While it does so it
notices that a factory class is supposed to be called for this controller name. However, it doesn’t find this factory class
so to the Manager it is an invalid factory. Using easy words: the Manager doesn’t find the Factory class so that’s
probably where our error lies. And of course, we have yet to write the factory, so let’s go ahead and do this.

68 Chapter 20. Bringing the Service into the Controller

19

20

21

22

23

24

25

CHAPTER 21

Writing a Factory Class

Factory classes within Zend Framework 2 always need to implement the
Zend\ServiceManager\FactoryInterface. Implementing this class lets the ServiceManager know
that the function createService () is supposed to be called. And createService () actually expects to be
passed an instance of the ServiceLocatorInterface so the ServiceManager will always inject this using Dependency
Injection as we have learned above. Let’s implement our factory class:

<?php
// Filename: /module/Blog/src/Blog/Factory/ListControllerFactory.php
namespace Blog\Factory;

use Blog\Controller\ListController;
use Zend\ServiceManager\FactoryInterface;
use Zend\ServiceManager\ServiceLocatorInterface;

class ListControllerFactory implements FactoryInterface
{
J ok *
* Create service
*
* @param ServiceLocatorInterface SserviceLocator
*
* @return mixed
*/
public function createService (ServicelocatorInterface S$servicelocator)

{

SrealServiceLocator = tor->getServicelLocator () ;

$postService = SrealServicel

return new ListController (SpostService);

Now this looks complicated! Let’s start to look at the SrealServiceLocator. When using a Factory-Class
that will be called from the ControllerManager it will actually inject itself as the $servicelLocator.
However, we need the real ServiceManager to get to our Service-Classes. This is why we call the function
getServiceLocator () ' who will give us the real ‘‘ServiceManager.

After we have the S$realServiceLocator set up we try to get a Service called
Blog\Service\PostServiceInterface. This name that we're accessing is supposed to return a Ser-
vice that matches the Post ServiceInterface. This Service is then passed along to the ListController
which will directly be returned.

Note though that we have yet to register a Service called Blog\Service\PostServiceInterface. There’s

69

cator—->get (' Blog\Service\PostServicelnterface’);

Zend Framework 2 Documentation, Release 2.3.5

no magic happening that does this for us just because we give the Service the name of an Interface. Refresh your
browser and you will see this error message:

An error occurred
An error occurred during execution; please try again later.

Additional information:
Zend\ServiceManager\Exception\ServiceNotFoundException

File:
{libraryPath}\Zend\ServiceManager\ServiceManager.php: {1lineNumber}

Message:
Zend\ServiceManager\ServiceManager: :get was unable to fetch or create an instance for Blog\Service\l

Exactly what we expected. ~Somewhere in our application - currently our factory class - a service called
Blog\Service\PostServiceInterface is requested but the ServiceManager doesn’t know about this
Service yet. Therefore it isn’t able to create an instance for the requested name.

70 Chapter 21. Writing a Factory Class

CHAPTER 22

Registering Services

Registering a Service is as simple as registering a Controller. All we need to do is modify our module.config.php
and add a new key called service_manager that then has invokables and factories, too, the same way
like we have it inside our controllers array. Check out the new configuration file:

<?php
// Filename: /module/Blog/config/module.config.php
return array (
" service_manager’ => array(
"invokables’ => array (
"Blog\Service\PostServicelInterface’ => ’"Blog\Service\PostService’

),

’view_manager’ => array(/*+ View Manager Config */),
"controllers’ => array(/+# Controller Config x/),
"router’ => array(/++ Router Config #*/)

)i

As you can see we now have added a new Service that listens to the name
Blog\Service\PostServiceInterface and points to our own implementation which is
Blog\Service\PostService. Since our Service has no dependencies we are able to add this Service
under the invokables array. Try refreshing your browser. You should see no more error messages but rather
exactly the page that we have created in the previous chapter of the Tutorial.

71

Zend Framework 2 Documentation, Release 2.3.5

72 Chapter 22. Registering Services

20

21

22

23

24

25

26

27

CHAPTER 23

Using the Service at our Controller

Let’s now use the PostService within our ListController. For this we will need to overwrite the default
indexAction () and return the values of our Post Service into the view. Modify the ListController like
this:

<?php
// Filename: /module/Blog/src/Blog/Controller/ListController.php
namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class ListController extends AbstractActionController

{
J ok k
* @var \Blog\Service\PostServicelInterface
*/

protected SpostService;

public function __ construct (PostServicelInterface SpostService)
{

postService;

Sthis—->postService =

public function indexAction()

{
return new ViewModel (array (
"posts’ => $this->postService->findAllPosts()

)) i

}

First please note that our controller imported another class. We need to import Zend\View\Model\ViewModel,
which usually is what your Controllers will return. When returning an instance of a ViewModel you’re able to always
assign so called View-Variables. In this case we have assigned a variable called $posts with the value of whatever
the function findAl1Posts () of our PostService returns. In our case it is an array of Blog\Model\Post
classes. Refreshing the browser won’t change anything yet because we obviously need to modify our view-file to be
able to display the data we want to.

Note: You do not actually need to return an instance of ViewModel. When you return a normal php array it will
internally be converted into a ViewModel. So in short:

return new ViewModel (array ('’ foo’ => ’'bar’));

73

Zend Framework 2 Documentation, Release 2.3.5

equals

return array ('’ foo’ => ’'bar’);

74 Chapter 23. Using the Service at our Controller

CHAPTER 24

Accessing View Variables

When pushing variables to the view they are accessible through two ways. Either directly like $this->posts
or implicitly like Sposts. Both are the same, however, calling $posts implicitly will result in a little round-trip
through the __call () function.

Let’s modify our view to display a table of all blog posts that our Post Service returns.

<!-— Filename: /module/Blog/view/blog/list/index.phtml ——>
<hl>Blog</hl>
<?php foreach (Sthis->posts as Spost): ?>
<article>
<hl id="post<?= Spost->getId() ?>"><?= Spost->getTitle() ?></hl>
<p>
<?= Spost->getText () ?>
</p>
</article>

<?php endforeach ?>

In here we simply run a foreach over the array $this—->posts. Since every single entry of our array is of type
Blog\Model\Post we can use the respective getter functions to receive the data we want to get.

75

Zend Framework 2 Documentation, Release 2.3.5

76 Chapter 24. Accessing View Variables

CHAPTER 25

Summary

And with this the current chapter is finished. We now have learned how to interact with the ServiceManager and
we also know what dependency injection is all about. We are now able to pass variables from our services into the
view through a controller and we know how to iterate over arrays inside a view-script.

In the next chapter we will take a first look at the things we should do when we want to get data from a database.

77

Zend Framework 2 Documentation, Release 2.3.5

78 Chapter 25. Summary

CHAPTER 26

Preparing for different Database-Backends

In the previous chapter we have created a Post Service that returns some data from blog posts. While this served
an easy to understand learning purpose it is quite impractical for real world applications. No one would want to modify
the source files each time a new post is added. But luckily we all know about databases. All we need to learn is how
to interact with databases from our ZF2 application.

But there is a catch. There are many database backend systems, namely SQL and NoSQL databases. While in a
real-world you would probably jump right to the solution that fits you the most at the time being, it is a better practice
to create another layer in front of the actual database access that abstracts the database interaction. We call this the
Mapper-Layer.

79

Zend Framework 2 Documentation, Release 2.3.5

80 Chapter 26. Preparing for different Database-Backends

CHAPTER 27

What is database abstraction?

The term “database abstraction” may sound quite confusing but this is actually a very simple thing.
Consider a SQL and a NoSQL database. Both have methods for CRUD (Create, Read, Update,
Delete) operations. For example to query the database against a given row in MySQL you’d do a
mysgli_query (' SELECT foo FROM bar’). But using an ORM for MongoDB for example you’d do some-
thing like SmongoODM->getRepository ('bar’)->find (' foo’). Both engines would give you the same
result but the execution is different.

So if we start using a SQL database and write those codes directly into our Post Service and a year later we decide
to switch to a NoSQL database, we would literally have to delete all previously coded lines and write new ones. And
in a few years later a new thing pops up and we have to delete and re-write codes again. This isn’t really the best
approach and that’s precisely where database abstraction or the Mapper-Layer comes in handy.

Basically what we do is to create a new Interface. This interface then defines how our database interaction should
function but the actual implementation is left out. But let’s stop the theory and go over to code this thing.

81

Zend Framework 2 Documentation, Release 2.3.5

82 Chapter 27. What is database abstraction?

CHAPTER 28

Creating the PostMapperinterface

Let’s first think a bit about what possible database interactions we can think of. We need to be able to:

* find a single blog post

find all blog posts

* insert new blog post

* update existing blog posts
¢ delete existing blog posts

Those are the most important ones I'd guess for now. Considering insert () and update () both write into the
database it’d be nice to have just a single save () -function that calls the proper function internally.

Start by creating a new file inside a new namespace Blog\Mapper called PostMapperInterface.php and
add the following content to it.

<?php
// Filename: /module/Blog/src/Blog/Mapper/PostMapperInterface.php
namespace Blog\Mapper;

use Blog\Model\PostInterface;

interface PostMapperInterface

{
J ok *
* @param int/string $id
* @return PostInterface
* @throws \InvalidArgumentException
*/
public function find($id);

J ok k
* @return array|PostInterfacel]
*/
public function findAll ();
}

As you can see we define two different functions. We say that a mapper-implementation is supposed to have one
find () -function that returns a single object implementing the Post Interface. Then we want to have one func-
tion called £indAll () that returns an array of objects implementing the Post Interface. Definitions for a
possible save () or delete () functionality will not be added to the interface yet since we’ll only be looking at the
read-only side of things for now. They will be added at a later point though!

83

Zend Framework 2 Documentation, Release 2.3.5

84 Chapter 28. Creating the PostMapperinterface

20

21

22

23

24

25

26

27

28

29

CHAPTER 29

Refactoring the PostService

Now that we have defined how our mapper should act we can make use of it inside our Post Service. To start off
the refactoring process let’s empty our class and delete all current content. Then implement the functions defined by
the PostServiceInterface and you should have an empty Post Service that looks like this:

The first thing we need to keep in mind is that this interface isn’t implemented in our Post Service but is rather
used as a dependency. A required dependency, therefore we need to create a ___construct () that takes any imple-
mentation of this interface as a parameter. Also you should create a protected variable to store the parameter into.

<?php
// Filename: /module/Blog/src/Blog/Service/PostService.php
namespace Blog\Service;

use Blog\Mapper\PostMapperInterface;

class PostService implements PostServicelnterface
{
J ok k
* @var \Blog\Mapper\PostMapperInterface
*/
protected SpostMapper;

Ve
* @param PostMapperInterface S$postMapper
*/
public function __ construct (PostMapperInterface S$SpostMapper)

{

Sthis->postMapper = SpostMapper;

J ok *
* {@inheritDoc}
*/
public function findAllPosts()
{
}

J ok k
* {@inheritDoc}
*/
public function findPost ($id)
{
}

85

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

With this we now require an implementation of the PostMapperInterface for our PostService to function.
Since none exists yet we can not get our application to work and we’ll be seeing the following PHP error:

Catchable fatal error: Argument 1 passed to Blog\Service\PostService::__construct ()
must implement interface Blog\Mapper\PostMapperInterface, none given,

called in {path}\module\Blog\src\Blog\Service\PostServiceFactory.php on line 19
and defined in {path}\module\Blog\src\Blog\Service\PostService.php on line 17

But the power of what we’re doing lies within assumptions that we can make. This PostService will always
have a mapper passed as an argument. So in our £ind« () -functions we can assume that it is there. Recall that the
PostMapperInterface definesa find ($id) and a findAl1l () function. Let’s use those within our Service-
functions:

<?php
// Filename: /module/Blog/src/Blog/Service/PostService.php
namespace Blog\Service;

use Blog\Mapper\PostMapperInterface;

class PostService implements PostServicelnterface
{
J ok k
* @var \Blog\Mapper\PostMapperInterface
*/
protected S$SpostMapper;

Ve
* @param PostMapperInterface S$SpostMapper
*/
public function __ construct (PostMapperInterface S$SpostMapper)

{

Sthis->postMapper = SpostMapper;

J ko
* {@inheritDoc}
*/
public function findAllPosts()

{
return Sthis->postMapper->findAll();

VS

* {@inheritDoc}

*/
public function findPost ($id)
{

return S$this->postMapper->find($id);

Looking at this code you’ll see that we use the postMapper to get access to the data we want. How this is happening
isn’t the business of the Post Service anymore. But the Post Service does know what data it will receive and
that’s the only important thing.

86 Chapter 29. Refactoring the PostService

CHAPTER 30

The PostService has a dependency

Now that we have introduced the PostMapperInterface as a dependency for the PostService we are no
longer able to define this service as an invokable because it has a dependency. So we need to create a factory for
the service. Do this by creating a factory the same way we have done for the ListController. First change the
configuration from an invokables-entry to a factories-entry and assign the proper factory class:

<?php
// Filename: /module/Blog/config/module.config.php
return array (

)i

"service_manager’ => array (
"factories’ => array(
"Blog\Service\PostServicelInterface’ => ’'Blog\Factory\PostServiceFactory’

)y

"view_manager’ => array(/++ ViewManager Config */),
"controllers’ => array(/#x ControllerManager Config =/),
"router’ => array(/x* Router Config =%/)

Going by the above configuration we now need to create the class Blog\Factory\PostServiceFactory so
let’s go ahead and create it:

<?php
// Filename: /module/Blog/src/Blog/Factory/PostServiceFactory.php
namespace Blog\Factory;

use Blog\Service\PostService;

use Zend\ServiceManager\FactoryInterface;
use Zend\ServiceManager\ServicelLocatorInterface;

class PostServiceFactory implements FactoryInterface
{
J ok k
* Create service
*
* @param ServiceLocatorInterface SserviceLocator
* @return mixed
*/
public function createService (ServicelocatorInterface S$servicelocator)
{
return new PostService (
SservicelLocator->get (' Blog\Mapper\PostMapperInterface’)

)i

23

Zend Framework 2 Documentation, Release 2.3.5

}

With this in place you should now be able to see the ServiceNotFoundException, thrown by the
ServiceManager, saying that the requested service cannot be found.

Additional information:

Zend\ServiceManager\Exception\ServiceNotFoundException

File:

{libraryPath}\Zend\ServiceManager\ServiceManager.php:529

Message:

Zend\ServiceManager\ServiceManager: :get was unable to fetch or create an instance for Blog\Mapper\P«

88

Chapter 30. The PostService has a dependency

CHAPTER 31

Conclusion

We finalize this chapter with the fact that we successfully managed to keep the database-logic outside of our service.
Now we are able to implement different database solution depending on our need and change them easily when the
time requires it.

In the next chapter we will create the actual implementation of our PostMapperInterface using Zend\Db\Sql.

89

Zend Framework 2 Documentation, Release 2.3.5

90 Chapter 31. Conclusion

CHAPTER 32

Introducing Zend\Db\Sql and Zend\Stdlib\Hydrator

In the last chapter we have introduced the mapping layer and created the PostMapperInterface. Now it is
time to create an implementation of this interface so that we can make use of our PostService again. As an
introductionary example we will be using the Zend\Db\ Sq1l classes. So let’s jump right into it.

91

Zend Framework 2 Documentation, Release 2.3.5

92 Chapter 32. Introducing Zend\Db\Sql and Zend\Stdlib\Hydrator

CHAPTER 33

Preparing the Database

Before we can start using a database we should prepare one. In this example we’ll be using a MySQL-Database called
blog which is accessible on the 1localhost. The database will have one table called posts with three columns
id, title and text with the id being the primary key. For demo purpose, please use this database-dump.

CREATE TABLE posts (

id int (11) NOT NULL auto_increment,

title varchar (100)
text TEXT NOT NULL,
PRIMARY KEY (id)

NOT NULL,

)i

INSERT INTO posts (title, text)

VALUES

("Blog #1’, 'Welcome

INSERT INTO posts (title, text)

VALUES

("Blog #2’, 'Welcome

INSERT INTO posts (title, text)

VALUES

('"Blog #3’, "Welcome

INSERT INTO posts (title, text)

VALUES

("Blog #4’, 'Welcome

INSERT INTO posts (title, text)

VALUES

("Blog #5’, "Welcome

to

to

to

to

to

my

my

my

my

my

first blog post’);

second blog post’);

third blog post’);

fourth blog post’);

fifth blog post’);

93

Zend Framework 2 Documentation, Release 2.3.5

94 Chapter 33. Preparing the Database

CHAPTER 34

Quick Facts Zend\Db\Sq|

To create queries against a database using Zend\Db\Sgl you need to have a database connection available. This
connection is served through any class implementing the Zend\Db\Adapter\AdapterInterface. The most
handy way to create such a class is through the use of the Zend\Db\Adapter\AdapterServiceFactory
which listens to the config-key db. Let’s start by creating the required configuration entries and modify your
module.config.php adding a new top-level key called db:

<?php
// Filename: /module/Blog/config/module.config.php
return array (

"db’ => array (

"driver’ => ’'pdo’,

’username’ => ' SECRET_USERNAME’, //edit this
"password’ => /SECRET_PASSWORD', //edit this
"dsn’ => "mysqgl:dbname=blog;host=localhost’,

"driver_options’ => array (
\PDO: :MYSQL_ATTR_INIT_COMMAND => ’SET NAMES \’UTF8\’’

) 4

"service_manager’ => array(/*+ ServiceManager Config x*/),
"view_manager’ => array(/#* ViewManager Config x/),
"controllers’ => array(/## ControllerManager Config x/),
"router’ => array(/+* Router Config x/)

)i

As you can see we’ve added the db-key and inside we create the parameters required to create a driver instance.

Note: One important thing to note is that in general you do not want to have your credentials inside the normal
configuration file but rather in a local configuration file like /config/autoload/db.local.php, that will not

be pushed to servers using zend-skeletons . gitignore file. Keep this in mind when you share your codes!
Taking this example you would have this file:

<?php
// Filename: /config/autoload/db.local.php
return array (

"db’ => array(
"driver’ => ’"Pdo’,
"username’ => /SECRET_USERNAME’, //edit this
"password’ => ' SECRET_PASSWORD’, //edit this
"dsn’ => 'mysqgl:dbname=blog;host=localhost’,

"driver_options’ => array(
\PDO: :MYSQL_ATTR_INIT_COMMAND => ’SET NAMES \’UTF8\’’

95

Zend Framework 2 Documentation, Release 2.3.5

)
)i

The next thing we need to do is by making use of the AdapterServiceFactory. Thisis a ServiceManager
entry that will look like the following:

<?php
// Filename: /module/Blog/config/module.config.php
return array (

"db’ => array(

"driver’ => ’Pdo’,

"username’ => ' SECRET_USERNAME’, //edit this
"password’ => /SECRET_PASSWORD', //edit this
"dsn’ => 'mysqgl:dbname=blog;host=localhost’,

"driver_options’ => array (
\PDO: :MYSQL_ATTR_INIT_COMMAND => ’SET NAMES \’UTF8\’’

),
" service_manager’ => array (
"factories’ => array(
"Blog\Service\PostServicelInterface’ => ’'Blog\Service\Factory\PostServiceFactory’,

" Zend\Db\Adapter\Adapter’ => ’Zend\Db\Adapter\AdapterServiceFactory’
)
)/
"view_manager’ => array(/+#* ViewManager Config #*/),
"controllers’ => array(/+# ControllerManager Config x/),
"router’ => array(/+# Router Config #*/)

)i

Note the new Service that we called Zend\Db\Adapter\Adapter. Calling this Service will now always give
back a running instance of the Zend\Db\Adapter\AdapterInterface depending on what driver we assign.

With the adapter in place we’re now able to run queries against the database. The construction of queries
is best done through the “QueryBuilder” features of Zend\Db\Sgl which are Zend\Db\Sgl\Sgl for se-
lect queries, Zend\Db\Sgl\Insert for insert queries, Zend\Db\Sgl\Update for update queries and
Zend\Db\Sgl\Delete for delete queries. The basic workflow of these components is:

1. Build a query using Sgl, Insert, Update or Delete
2. Create an Sql-Statement from the Sg1 object

3. Execute the query

4. Do something with the result

Knowing this we can now write the implementation for the PostMapperInterface.

96 Chapter 34. Quick Facts Zend\Db\Sq|

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

CHAPTER 35

Writing the mapper implementation

Our mapper implementation will reside inside the same namespace as its interface. Go ahead and create a class called
ZendDbSglMapper and implement the PostMapperInterface

Now recall what we have learned earlier. For Zend\Db\Sqgl to function we will need a working implementation of
the AdapterInterface. This is a requirement and therefore will be injected using constructor-injection. Create a
__construct () function that accepts an AdapterInterface as parameter and store it within the class.

<?php

// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php

namespace Blog\Mapper;

use Blog\Model\PostInterface;
use Zend\Db\Adapter\AdapterInterface;

class ZendDbSqglMapper implements PostMapperInterface

{
J ok

* @var \Zend\Db\Adapter\AdapterInterface

*/
protected S$dbAdapter;

VS
* @param AdapterInterface

*/

SdbAdapter

public function __ construct (AdapterInterface SdbAdapter)

{

Sthis->dbAdapter = SdbAdapter;

* @param int|string S$id

* @return PostInterface

3%

*/
public function find($id)
{
}

J ok k
* @return array|PostInterfacel]
*/

public function findAll ()

@throws \InvalidArgumentException

97

Zend Framework 2 Documentation, Release 2.3.5

As you know from previous chapters, whenever we have a required parameter we need to write a factory for the class.
Go ahead and create a factory for our mapper implementation.

We’re now able to register our mapper implementation as a service. If you recall from the previ-
ous chapter, or if you were to look at the current error message, you’ll note that we call the Service
Blog\Mapper\PostMapperInterface to get a mapper implementation. Modify the configuration so that this
key will call the newly called factory class.

<?php
// Filename: /module/Blog/config/module.config.php
return array (
"db’ => array(/+* Db Config x/),
" service_manager’ => array (
"factories’ => array(
"Blog\Mapper\PostMapperInterface’ => ’'Blog\Factory\ZendDbSglMapperFactory’,
"Blog\Service\PostServicelInterface’ => ’'Blog\Service\Factory\PostServiceFactory’,
" zend\Db\Adapter\Adapter’ => '’ Zend\Db\Adapter\AdapterServiceFactory’

),

"view_manager’ => array(/+* ViewManager Config =/),
"controllers’ => array(/##* ControllerManager Config =*/),
"router’ => array(/+* Router Config x/)

)i

With the adapter in place you’re now able to refresh the blog index at Localhost:8080/blog and you’ll notice
that the ServiceNotFoundException is gone and we get the following PHP Warning:

Warning: Invalid argument supplied for foreach() in /module/Blog/view/blog/list/index.phtml on line
ID Text Title

This is due to the fact that our mapper doesn’t return anything yet. Let’s modify the findA11 () function to return
all blogs from the database table.

<?php
// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
namespace Blog\Mapper;

use Zend\Db\Adapter\AdapterInterface;

class ZendDbSglMapper implements PostMapperInterface
{
J *k
* @var \Zend\Db\Adapter\AdapterInterface
*/
protected S$dbAdapter;

VS
* @param AdapterInterface SdbAdapter
*/
public function __ construct (AdapterInterface SdbAdapter)

{
Sthis->dbAdapter = SdbAdapter;

J ok *

98 Chapter 35. Writing the mapper implementation

23
2%
25
2
27
28
29
30
31
3
33
34
35
36
37
38
39
40
41
)
43
44

45

20
21
22
23
24
25
26
27
28

29

Zend Framework 2 Documentation, Release 2.3.5

* @param int/string $id
*
* @return \Blog\Entity\PostInterface
* @throws \InvalidArgumentException
*/

public function find($id)

{

}

/ x
* @return array/|\Blog\Entity\PostInterfacel[]
*/
public function findAll ()
{
$sql new Sgl (Sthis->dbAdapter);
Sselect = $sgl->select ('posts’);

Sstmt = $sqgl->prepareStatementForSglObject ($Sselect);

Sresult = S$stmt->execute();

return Sresult;

The above code should look fairly straight forward to you. Sadly, though, a refresh of the application reveals another
error message.

Let’s not return the $result variable for now and do a dump of it to see what we get here. Change the findAl1l ()
function and do a data dumping of the $result variable:

<?php

// Filename: /module/Blog/src/Blog/Mapper/ZendDbSglMapper.php
namespace Blog\Mapper;

use Blog\Model\PostInterface;
use Zend\Db\Adapter\AdapterInterface;
use Zend\Db\Sqgl\Sql;

class ZendDbSglMapper implements PostMapperInterface

{

J ko

+ @var \Zend\Db\Adapter\AdapterInterface
*/
protected SdbAdapter;

J ok k

* @param AdapterInterface SdbAdapter
*/
public function __ construct (AdapterInterface SdbAdapter)

{

Sthis->dbAdapter = S$dbAdapter;

J ok k

%

X%

@param int/string $id

@return PostInterface
@throws \InvalidArgumentException

*/

99

40

41

42

43

44

45

46

47

Zend Framework 2 Documentation, Release 2.3.5

public function find($id)
{
}

J ok k
* @return array|PostInterfacel]
*/

public function findAll ()

{

Ssql = new Sqgl (Sthis->dbAdapter);
Sselect Ssgl->select ('posts’);
Sstmt =

Sresult = $stmt->execute();

\Zend\Debug\Debug: :dump (Sresult) ;die () ;

Refreshing the application you should now see the following output:

object (Zend\Db\Adapter\Driver\Pdo\Result) #303 (8) {
["statementMode" :protected] => string(7) "forward"
["resource":protected] => object (PDOStatement) #296
["queryString"] => string(29) "SELECT

"options":protected] => NULL

"currentComplete" :protected] => bool (false)
=> NULL

"position":protected] => int (-1)

"generatedValue":protected] => string(l) "0O"

}
[
[
["currentData" :protected]
[
[
[=> NULL

"rowCount":protected]

(1) |
‘posts'.x FROM ‘posts*"

As you can see we do not get any data returned. Instead we are presented with a dump of some Result object that
appears to have no data in it whatsoever. But this is a faulty assumption. This Result object only has information
available for you when you actually try to access it. To make use of the data within the Result object the best
approach would be to pass the Result object over into a ResultSet object, as long as the query was successful.

<?php

// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php

namespace Blog\Mapper;

Blog\Model\PostInterface;
Zend\Db\Adapter\AdapterInterface;
Zend\Db\Adapter\Driver\ResultInterface;
Zend\Db\ResultSet\ResultSet;
Zend\Db\Sqgl\Sqgl;

use
use
use
use
use

class ZendDbSqglMapper implements PostMapperInterface
{
J ok k
* @var \Zend\Db\Adapter\AdapterInterface
*/
protected S$dbAdapter;

VT
* @param AdapterInterface
*/

SdbAdapter

100 Chapter 35.

Writing the mapper implementation

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Zend Framework 2 Documentation, Release 2.3.5

public function __construct (AdapterInterface SdbAdapter)

{
Sthis->dbAdapter = S$dbAdapter;

J ok
* @param int|string $id
*
* @return PostInterface
* @throws \InvalidArgumentException
*/
public function find($id)
{
}

J ok *
* @return array|PostInterfacel[]
*/
public function findAll ()
{
$sql = new Sgl (Sthis->dbAdapter);
Sselect = S$sgl->select ('posts’);
Sstmt = S$sgl->prepareStatementForSqlObject ($select);
Sresult = S$stmt->execute();
if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()) |
SresultSet = new ResultSet ();

\Zend\Debug\Debug: :dump (SresultSet->initialize (Sresult));die();

die ("no data");

Refreshing the page you should now see the dump of a ResultSet object that has a property
["count":protected] => int (5). Meaning we have five rows inside our database.

object (Zend\Db\ResultSet\ResultSet) #304 (8) {

["allowedReturnTypes":protected] => array(2) {
[0] => string(ll) "arrayobject"
[1] => string(5) "array"
}
["arrayObjectPrototype":protected] => object (ArrayObject) #305 (1) {
["storage":"ArrayObject":private] => array(0) {
}

}

["returnType":protected] => string(ll) "arrayobject"
["buffer":protected] => NULL
[
[

"count":protected] => int (2)
"dataSource":protected] => object (Zend\Db\Adapter\Driver\Pdo\Result) #303 (8) {
["statementMode" :protected] => string(7) "forward"

["resource":protected] => object (PDOStatement) #296 (1) {
["queryString"] => string(29) "SELECT ‘posts‘.x FROM ‘posts‘"

}

["options":protected] => NULL

["currentComplete" ::protected] => bool (false)

101

20
21
22
23
24

25

27

20
21
22
23
24
25
26
27
28

29

Zend Framework 2 Documentation, Release 2.3.5

["currentData":protected] => NULL
["position":protected] => int (-1)
["generatedValue":protected] => string(l) "O"
["rowCount":protected] => int (2)

}

["fieldCount":protected] => int (3)

["position":protected] => int (0)

}

Another very interesting property is ["returnType" :protected] => string(ll) "arrayobject".
This tells us that all database entries will be returned as an ArrayObject. And this is a little problem as the
PostMapperInterface requires us to return an array of Post Interface objects. Luckily there is a very sim-
ple option for us available to make this happen. In the examples above we have used the default ResultSet object.
There is also a Hydrat ingResultSet which will hydrate the given data into a provided object.

This means: if we tell the HydratingResultSet to use the database data to create Post objects for us, then it
will do exactly this. Let’s modify our code:

<?php
// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
namespace Blog\Mapper;

use Blog\Model\PostInterface;

use Zend\Db\Adapter\AdapterInterface;

use Zend\Db\Adapter\Driver\ResultInterface;
use Zend\Db\ResultSet\HydratingResultSet;
use Zend\Db\Sqgl\Sqgl;

class ZendDbSqglMapper implements PostMapperInterface
{
J ok
* @var \Zend\Db\Adapter\AdapterInterface
*/
protected S$dbAdapter;

VEE:
* @param AdapterInterface SdbAdapter
*/
public function __ construct (AdapterInterface SdbAdapter)

{
Sthis->dbAdapter = SdbAdapter;

* @param int|string S$id

* @return PostInterface
@throws \InvalidArgumentException

3%

*/
public function find($id)
{

}

J ok k
* @return array|PostInterfacel]
*/

public function findAll ()

{

102 Chapter 35. Writing the mapper implementation

41

42

43

44

45

46

47

48

49

50

51

53

54

Zend Framework 2 Documentation, Release 2.3.5

= new Sqgl (Sthis->dbAdapter);
= Ssgl—->select ('posts’);

= gl->prepareStatementForSglObject ($select);
sult = cmt->execute () ;
if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()) |

SresultSet = new HydratingResultSet (new \Zend\Stdlib\Hydrator\ClassMethods (),

return SresultSet->initialize (Sresult);

return array();

}

We have changed a couple of things here. Firstly instead of a normal ResultSet we are using the
HydratingResultSet. This Object requires two parameters, the second one being the object to hydrate into
and the first one being the hydrator that will be used. A hydrator, in short, is an object that changes any sort
of data from one format to another. The InputFormat that we have is an ArrayObject but we want Post-Models.
The ClassMethods-hydrator will take care of this using the setter- and getter functions of our Post-model.

Instead of dumping the $result variable we now directly return the initialized HydratingResultSet so
we’ll be able to access the data stored within. In case we get something else returned that is not an instance of a
ResultInterface we return an empty array.

Refreshing the page you will now see all your blog posts listed on the page. Great!

103

Zend Framework 2 Documentation, Release 2.3.5

104 Chapter 35. Writing the mapper implementation

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

37

38

40

41

CHAPTER 36

Refactoring hidden dependencies

There’s one little thing that we have done that’s not a best-practice. We use both a Hydrator and an Object inside our

<?php
// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
namespace Blog\Mapper;

use
use
use
use
use
use

Blog\Model\PostInterface;
Zend\Db\Adapter\AdapterInterface;
Zend\Db\Adapter\Driver\ResultInterface;
Zend\Db\ResultSet\HydratingResultSet;
Zend\Db\Sgl\Sql;
Zend\Stdlib\Hydrator\HydratorInterface;

class ZendDbSglMapper implements PostMapperInterface

{

Ve

* @var \Zend\Db\Adapter\AdapterInterface

*/
protected S$dbAdapter;

J x*

+ @var \Zend\Stdlib\Hydrator\HydratorInterface

*/
protected Shydrator;

J ok k
* @var \Blog\Model\PostInterface
*/

protected SpostPrototype;

J ok k
* @param AdapterInterface SdbAdapter
* @param HydratorInterface Shydrator
* @param PostInterface
*/
public function ___construct (
AdapterInterface SdbAdapter,
HydratorInterface Shydrator,
PostInterface SpostPrototype

SpostPrototype

Sthis->dbAdapter = S$dbAdapter;
Sthis->hydrator = Shydrator;
Sthis->postPrototype = $postPrototype;

105

2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Zend Framework 2 Documentation, Release 2.3.5

J ko
* @param int|string $id
*
* @return PostInterface
* @throws \InvalidArgumentException
*/
public function find($id)
{
}

J ok ok
* @return array|PostInterfacel]
*/
public function findAll ()
{
$sqgl = new Sqgl (Sthis->dbAdapter);
Sselect = S$sgl->select ('posts’);

Sstmt = $sgl->prepareStatementForSglObject (Sselect);
Sresult = S$stmt->execute();
if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()) |

SresultSet = new HydratingResultSet (Sthis->hydrator, S$this->postPrototype);

return SresultSet->initialize (Sresult);

return array();

Now that our mapper requires more parameters we need to update the ZendDbSglMapperFactory and inject
those parameters.

<?php
// Filename: /module/Blog/src/Blog/Factory/ZendDbSqglMapperFactory.php
namespace Blog\Factory;

use
use
use
use
use

Blog\Mapper\ZendDbSqlMapper;
Blog\Model\Post;
Zend\ServiceManager\FactoryInterface;
Zend\ServiceManager\ServiceLocatorInterface;
Zend\Stdlib\Hydrator\ClassMethods;

class ZendDbSqlMapperFactory implements FactoryInterface

{

Jxx

* Create service

*

* @param ServiceLocatorInterface SserviceLocator

*

* @return mixed

*/
public function createService (ServicelLocatorInterface S$servicelLocator)
{

return new ZendDbSglMapper (

106

Chapter 36. Refactoring hidden dependencies

23

24

25

26

27

28

Zend Framework 2 Documentation, Release 2.3.5

SserviceLocator—>get (' Zend\Db\Adapter\Adapter’),
new ClassMethods (false),
new Post ()

)i

}

With this in place you can refresh the application again and you’ll see your blog posts listed once again. Our Mapper

has now a really good architecture and no more hidden dependencies.

107

Zend Framework 2 Documentation, Release 2.3.5

108 Chapter 36. Refactoring hidden dependencies

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

CHAPTER 37

Finishing the mapper

Before we jump into the next chapter let’s quickly finish the mapper by writing an implementation for the £ind ()
method.

<?php
// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
namespace Blog\Mapper;

use
use
use
use
use
use

Blog\Model\PostInterface;
Zend\Db\Adapter\AdapterInterface;
Zend\Db\Adapter\Driver\ResultInterface;
Zend\Db\ResultSet\HydratingResultSet;
Zend\Db\Sgl\Sql;
Zend\Stdlib\Hydrator\HydratorInterface;

class ZendDbSglMapper implements PostMapperInterface

{

VS
* @var \Zend\Db\Adapter\AdapterInterface
*/

protected S$dbAdapter;

Ve
* @var \Zend\Stdlib\Hydrator\HydratorInterface
*/

protected Shydrator;

/%
* @var \Blog\Model\PostInterface
*/

protected SpostPrototype;

J ok k
* @param AdapterInterface SdbAdapter
* @param HydratorInterface S$hydrator
* @param PostInterface SpostPrototype
*/
public function __construct (
AdapterInterface SdbAdapter,
HydratorInterface Shydrator,
PostInterface S$SpostPrototype

Sthis->dbAdapter
Sthis->hydrator

SdbAdapter;
Shydrator;

109

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Zend Framework 2 Documentation, Release 2.3.5

Sthis->postPrototype = SpostPrototype;

VEE:
* @param int|string Sid
*
* @return PostInterface
* @throws \InvalidArgumentException
*/
public function find($id)
{

$sql = new Sgl (Sthis->dbAdapter);

Sselect = S$sgl->select ('posts’);

Sselect->where (array(’'id = 2’/ => $id));

Sstmt = $sqgl->prepareStatementForSqglObject (Sselect);
Sresult = S$stmt->execute();

if (Sresult instanceof ResultInterface && Sresult->isQueryResult () && Sresult->getAffectedR
return S$this->hydrator->hydrate (Sresult->current (), S$Sthis->postPrototype);

throw new \InvalidArgumentException("Blog with given ID:{$id} not found.");
}
J ok k
* @return array|PostInterfacel]
*/

public function findAll ()
{

$sql = new Sqgl (Sthis->dbAdapter);

Sselect = $sgl->select ('posts’);

Sstmt = Ssgl->prepareStatementForSqglObject ($select);

Sresult = S$stmt->execute();

if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()) |

<

SresultSet = new HydratingResultSet (Sthis->hydrator, S$this->postPrototype);

return SresultSet->initialize (Sresult);

return array();

The £ind () function looks really similar to the £indAl11 () function. There’s just three simple differences. Firstly
we need to add a condition to the query to only select one row. This is done using the where () function of the Sgl
object. Then we also check if the Sresult has a row in it through getAf fectedRows (). The return statement
then will be hydrated using the injected hydrator into the prototype that has also been injected.

This time, when we do not find a row we will throw an \InvalidArgumentException so that the application
will easily be able to handle the scenario.

110 Chapter 37. Finishing the mapper

CHAPTER 38

Conclusion

Finishing this chapter you now know how to query for data using the Zend\Db\ Sqgl classes. You have also learned
about the Zend\Stdlib\Hydrator-Component which is one of the new key components of ZF2. Furthermore
you have once again proven that you are able to manage proper dependency injection.

In the next chapter we’ll take a closer look at the router so we’ll be able to do some more action within our Module.

111

Zend Framework 2 Documentation, Release 2.3.5

112 Chapter 38. Conclusion

CHAPTER 39

Understanding the Router

Right now we have a pretty solid set up for our module. However, we’re not really doing all too much yet, to be
precise, all we do is display all B1og entries on one page. In this chapter you will learn everything you need to know
about the Router to create other routes to be able to display only a single blog, to add new blogs to your application
and to edit and delete existing blogs.

113

Zend Framework 2 Documentation, Release 2.3.5

114 Chapter 39. Understanding the Router

CHAPTER 40

Different route types

Before we go into details on our application, let’s take a look at the most important route types that Zend Framework
offers.

40.1 Zend\Mvc\Router\Http\Literal

The first common route type is the Literal-Route. As mentioned in a previous chapter a literal route is one that
matches a specific string. Examples for URLSs that are usually literal routes are:

* http://domain.com/blog

¢ http://domain.com/blog/add

* http://domain.com/about-me

* http://domain.com/my/very/deep/page
* http://domain.com/my/very/deep/page

Configuration for a literal route requires you to set up the route that should be matched and needs you to define some
defaults to be used, for example which controller and which action to call. A simple configuration for a literal route
looks like this:

"router’ => array (
"routes’ => array (
"about’ => array (
"type’ => ’'literal’,
"options’ => array(

"route’ => ' /about-me’,

"defaults’ => array (
"controller’” => ’AboutMeController’,
"action’ => ’"aboutme’,

),
)y

115

http://domain.com/blog
http://domain.com/blog/add
http://domain.com/about-me
http://domain.com/my/very/deep/page
http://domain.com/my/very/deep/page

Zend Framework 2 Documentation, Release 2.3.5

40.2 Zend\Mvc\Router\Http\Segment

The second most commonly used route type is the Segment-Route. A segmented route is used for whenever your url
is supposed to contain variable parameters. Pretty often those parameters are used to identify certain objects within
your application. Some examples for URLSs that contain parameters and are usually segment routes are:

Configuring a Segment-Route takes a little more effort but isn’t difficult to understand. The tasks you have to do are
similar at first, you have to define the route-type, just be sure to make it Segment. Then you have to define the route
and add parameters to it. Then as usual you define the defaults to be used, the only thing that differs in this part is that
you can assign defaults for your parameters, too. The new part that is used on routes of the Segment type is to define
so called constraints. They are used to tell the Router what “rules” are given for parameters. For example, an
id-parameter is only allowed to be of type integer, the year-parameter is only allowed to be of type integer
and may only contain exactly four digits. A sample configuration can look like this:

"router’ => array (
"routes’ => array (
"archives’ => array (
"type’ => ’segment’,
"options’ => array(

"route’ => ' /news/archive/:year’,
"defaults’ => array(
"controller’” => ’ArchiveController’,
"action’ => ’byYear’,

),
"constraints’ => array(
"year’ => ’"\d{4}’

This configuration defines a route for a URL like domain.com/news/archive/2014. As you can see, our route
now contains the part : year. This is called a route-parameter. Route parameters for Segment-Routes are defined

@,

by a full-colon (““:) in front of a string; the string is the parameter name.

Under constraints you see that we have another array. This array contains regular expression rules for each
parameter of your route. In our example case the regex uses two parts, the first one being \ d which means “a digit”, so
any number from 0-9. The second part is {4} which means that the part before this has to match exactly four times.
So in easy words we say “four digits”.

If now you call the URL domain.com/news/archive/123, the router will not match the URL because we only
support years with four digits.

You may notice that we did not define any defaults for the parameter year. This is because the parameter is
currently set up as a required parameter. If a parameter is supposed to be opt ional we need to define this inside
the route definition. This is done by adding square brackets around the parameter. Let’s modify the above example
route to have the year parameter optional and use the current year as default:

"router’ => array (
"routes’ => array (
"archives’ => array (
"type’ => ’'segment’,
"options’ => array (
"route’ => ' /news/archive[/:year]’,

"defaults’ => array (
"controller’” => ’ArchiveController’,
"action’ => ’'byYear’,

116 Chapter 40. Different route types

Zend Framework 2 Documentation, Release 2.3.5

'year’ => date ('Y’")
)y
"constraints’ => array(
"year’ => ’"\d{4}’

)

Notice that now we have a part in our route that is optional. Not only the parameter year is optional. The slash that is
separating the year parameter from the URL string archive is optional, too, and may only be there whenever the

year parameter is present.

40.2. Zend\Mvc\Router\Http\Segment

117

Zend Framework 2 Documentation, Release 2.3.5

118 Chapter 40. Different route types

CHAPTER 41

Different routing concepts

When thinking about the whole application it becomes clear that there are a lot of routes to be matched. When writing
these routes you have two options. One option is to spend less time writing routes that in turn are a little slow in
matching. Another option is to write very explicit routes that match a little faster but require more work to define.
Let’s take a look at both of them.

41.1 Generic routes

A generic route is one that matches many URLs. You may remember this concept from Zend Framework 1 where
basically you didn’t even bother about routes because we had one “god route” that was used for everything. You define
the controller, the action, and all parameters within just one single route.

The big advantage of this approach is the immense time you save when developing your application. The downside,
however, is that matching such a route can take a little bit longer due to the fact that so many variables need to be
checked. However, as long as you don’t overdo it, this is a viable concept. For this reason the ZendSkeletonApplication
uses a very generic route, too. Let’s take a look at a generic route:

"router’ => array (
"routes’ => array (
"default’ => array (
"type’ => 'segment’,
"options’ => array (
"route’ => ' /[:controller[/:action]]’,
"defaults’ => array (
’ __NAMESPACE__’ => ’'Application\Controller’,
"controller’ => ' Index’,
"action’ => ’index’,
) 14
"constraints’ =>
"controller’ > " [a-zA-Z] [a-zA-Z0-9_-1+«",
"action’ => ' [a-zA-Z] [a—-zA-Z0-9_-]%"',

)

Let’s take a closer look as to what has been defined in this configuration. The route part now contains two optional
parameters, controller and act ion. The act ion parameter is optional only when the cont roller parameter
is present.

119

Zend Framework 2 Documentation, Release 2.3.5

Within the defaults-section it looks a little bit different, too. The __ NAMESPACE___ will be used to concatenate
with the controller parameter at all times. So for example when the controller parameter is “news” then
the controller to be called from the Router will be Application\Controller\news, if the parameter is
“archive” the Router will call the controller Application\Controller\archive.

The defaults-section then is pretty straight forward again. Both parameters, controller and action, only
have to follow the conventions given by PHP-Standards. They have to start with a letter from a—z, upper- or lowercase
and after that first letter there can be an (almost) infinite amount of letters, digits, underscores or dashes.

The big downside to this approach not only is that matching this route is a little slower, it is that there is no error-
checking going on. For example, when you were to call a URL like domain.com/weird/doesntExist then
the controller would be “Application\Controller\weird” and the act ion would be “doesntExistAction”. As you
can guess by the names let’s assume neither controller nor action does exist. The route will still match but an
Exception will be thrown because the Router will be unable to find the requested resources and we’ll receive a
404-Response.

41.2 Explicit routes using child_routes

Explicit routing is done by defining all possible routes yourself. For this method you actually have two options
available, too.

Without config structure

The probably most easy to understand way to write explicit routes would be to write many top level routes like in the
following configuration:

As you can see with this little example, all routes have an explicit name and there’s lots of repetition going on. We
have to redefine the default controller to be used every single time and we don’t really have any structure within
the configuration. Let’s take a look at how we could bring more structure into a configuration like this.

Using child_routes for more structure

Another option to define explicit routes is to be using child_routes. Child routes inherit all opt ions from their
respective parents. Meaning: when the controller doesn’t change, you do not need to redefine it. Let’s take a look
at a child routes configuration using the same example as above:

"router’ => array (
"routes’ => array (
"news’ => array (
"type’ => 'literal’,
"options’ => array(

"route’ => ' /news’,

"defaults’ => array(
"controller’” => ’'NewsController’,
"action’ => ’showAll’,

),
)y

// Defines that "/news" can be matched on its own without a child route being matched

"may_terminate’ => true,
"child_routes’ => array(
"archive’ => array (

"type’ => ’segment’,
"options’ => array (

"route’ => ' /archive([/:year]’,
"defaults’ => array (
"action’ => ’"archive’,

) 4

"constraints’ => array (

120 Chapter 41. Different routing concepts

Zend Framework 2 Documentation, Release 2.3.5

"year’ => "\d{4}’

)I

)I

"single’ => array (
"type’ => ’'segment’,
"options’ => array (

"route’ => //:id’,
"defaults’ => array (

"action’ => ’detail’,
) 14
"constraints’ => array (

rid’ => '\d+’

)

This routing configuration requires a little more explanation. First of all we have a new configuration entry which
is called may_terminate. This property defines that the parent route can be matched alone, without child routes
needing to be matched, too. In other words all of the following routes are valid:

* /news

* /news/archive

* /news/archive/2014
e /news/42

If, however, you were to set may_terminate => false, then the parent route would only be used for global
defaults that all chi1ld_routes were to inherit. In other words: only child_routes can be matched, so the only
valid routes would be:

* /news/archive
* /news/archive/2014
* /news/42
The parent route would not be able to be matched on its own.

Next to that we have a new entry called child_routes. In here we define new routes that will be appended to the
parent route. There’s no real difference in configuration from routes you define as a child route to routes that are on
the top level of the configuration. The only thing that may fall away is the re-definition of shared default values.

The big advantage you have with this kind of configuration is the fact that you explicitly define the routes and therefore
you will never run into problems of non-existing controllers like you would with generic routes like described above.
The second advantage would be that this kind of routing is a little bit faster than generic routes and the last advantage
would be that you can easily see all possible URLs that start with /news.

While ultimately this falls into the category of personal preference bare in mind that debugging of explicit routes is
significantly easier than debugging generic routes.

41.2. Explicit routes using child_routes 121

Zend Framework 2 Documentation, Release 2.3.5

122 Chapter 41. Different routing concepts

20

21

22

23

24

25

26

27

28

29

30

CHAPTER 42

A practical example for our Blog Module

Now that we know how to configure new routes, let’s first create a route to display only a single Blog from our
Database. We want to be able to identify blog posts by their internal ID. Given that ID is a variable parameter we need
aroute of type Segment. Furthermore we want to put this route as a child route to the route of name blog.

<?php

// FileName: /module/Blog/config/module.config.php

return array (
" db’ =>
"service_manager’ =>
’view_manager’ =>
"controllers’ =>
"router’ => array (

array(/++ DB Config =%/),

array (

array(/+ ViewManager Config =/),
(

array

"routes’ => array (
"blog’ => array (
"type’ => ’literal’,

"options

"route’

' => array(
=> ' /blog’,

"defaults’ => array (

)y
)I

"controller’ => ’'Blog\Controller\List’,

"action’ => ’index’,

"may_terminate’ => true,
"child_routes’ => array (
"detail’ => array(

"type’ => ’segment’,
"options’ => array(
" route’ => ’/.1id’,
"defaults’ => array(
"action’ => ’'detail’
)I
"constraints’ => array (
rid’ => ' [1-9]\d=’

/% ServiceManager Config =/),

/% ControllerManager Config */),

With this we have set up a new route that we use to display a single blog entry. We have assigned a parameter called

123

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

id that needs to be a positive digit excluding 0. Database entries usually start with a 0 when it comes to primary ID
keys and therefore our regular expression constraints for the id fields looks a little more complicated. Basically
we tell the router that the parameter id has to start with an integer between 1 and 9, that’s the [1-9] part, and after
that zero or more digits can follow (that’s the \dx part).

The route will call the same cont roller like the parent route but it will call the detailAction () instead. Go to
your browser and request the URL http://localhost:8080/blog/2. You'll see the following error message:

A 404 error occurred

Page not found.
The requested controller was unable to dispatch the request.

Controller:
Blog\Controller\List

No Exception available

This is due to the fact that the controller tries to access the detailAction () which does not yet exist. Let’s go
ahead and create this action now. Go to your ListController and add the action. Return an empty ViewModel
and then refresh the page.

<?php
// FileName: /module/Blog/src/Blog/Controller/ListController.php
namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class ListController extends AbstractActionController
{

VS
* @var \Blog\Service\PostServicelInterface
*/
protected SpostService;
public function __construct (PostServicelnterface SpostService)

{

Sthis—->postService = §

public function indexAction()

{
return new ViewModel (array (
"posts’ => $this->postService->findAllPosts()

)) i

public function detailAction()

{

return new ViewModel () ;

}

Now you’ll see the all familiar message that a template was unable to be rendered. Let’s create this template now and
assume that we will get one Post-Object passed to the template to see the details of our blog. Create a new view file
under /view/blog/list/detail.phtml:

124 Chapter 42. A practical example for our Blog Module

20

21

22

23

24

25

26

27

28

29

1

2

Zend Framework 2 Documentation, Release 2.3.5

<!-- FileName: /module/Blog/view/blog/list/detail.phtml —-->
<hl>Post Details</hl>

<dl>
<dt>Post Title</dt>
<dd><?php echo Sthis->escapeHtml (Sthis->post->getTitle());?></dd>
<dt>Post Text</dt>
<dd><?php echo S$this->escapeHtml (Sthis->post->getText ());?></dd>
</dl>

Looking at this template we’re expecting the variable $this->post to be an instance of our Post-Model. Let’s
now modify our ListController so that a Post will be passed.

<?php
// FileName: /module/Blog/src/Blog/Controller/ListController.php
namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class ListController extends AbstractActionController
{
J ok
* @var \Blog\Service\PostServicelInterface
*/

protected SpostService;

public function __ construct (PostServicelInterface S$SpostService)

{

Sthis->postService = S$postService;

public function indexAction ()

{
return new ViewModel (array (
"posts’ => $this->postService->findAllPosts()

)) i

public function detailAction()

{

$id = $this->params () ->fromRoute (’id’);

return new ViewModel (array (
"post’ => $this->postService->findPost ($id)

)) i

If you refresh your application now you’ll see the details for our Post to be displayed. However, there
is one little Problem with what we have done. @ While we do have our Service set up to throw an
\InvalidArgumentException whenever no Post matching a given id is found, we don’t make use of this
just yet. Go to your browser and open the URL http://localhost:8080/blog/99. You will see the follow-
ing error message:

An error occurred
An error occurred during execution; please try again later.

125

20

21

22

23

24

25

26

27

28

36

37

38

39

40

41

)

Zend Framework 2 Documentation, Release 2.3.5

Additional information:
InvalidArgumentException

File:
{rootPath}/module/Blog/src/Blog/Service/PostService.php:40

Message:
Could not find row 99

This is kind of ugly, so our ListController should be prepared to do something whenever an
InvalidArgumentException is thrown by the PostService. Whenever an invalid Post is requested we
want the User to be redirected to the Post-Overview. Let’s do this by putting the call against the PostServiceina
try-catch statement.

<?php
// FileName: /module/Blog/src/Blog/Controller/ListController.php
namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class ListController extends AbstractActionController
{
J ok *
* @var \Blog\Service\PostServicelInterface
*/

protected SpostService;

public function __ construct (PostServiceInterface SpostService)

{

Sthis->postService = S$postService;

public function indexAction()
{
return new ViewModel (array (
"posts’ => $this->postService->findAllPosts ()

)) i

public function detailAction()
{

$id = $this->params () ->fromRoute (’id’);

try {
Spost = S$this->postService->findPost ($1d);
} ecatch (\InvalidArgumentException Sex) {
return S$this->redirect () ->toRoute (’blog’);

return new ViewModel (array (
"post’ => S$post
)) i

Now whenever you access an invalid id you’ll be redirected to the route b1 og which is our list of blog posts, perfect!

126 Chapter 42. A practical example for our Blog Module

CHAPTER 43

Making use of Forms and Fieldsets

So far all we did was read data from the database. In a real-life-application this won’t get us very far as very often
the least we need to do is to support full Create, Read, Update and Delete operations (CRUD). Most often the
process of getting data into our database is that a user enters the data into a web <form> and the application then uses
the user input and saves it into our backend.

We want to be able to do exactly this and Zend Framework provides us with all the tools we need to achieve our goal.
Before we jump into coding, we need to understand the two core components for this task first. So let’s take a look at
what these components are and what they are used for.

43.1 Zend\Form\Fieldset

The first component that you have to know about is Zend\Form\Fieldset. A Fieldset is a component that
contains a reusable set of elements. You will use the Fieldset to create the frontend-input for your backend-models.
It is considered good practice to have one Fieldset for every Model of your application.

The Fieldset-component, however, is no Form, meaning you will not be able to use a Fieldset without attach-
ing it to the Form-component. The advantage here is that you have one set of elements that you can re-use for as many
Forms as you like without having to re-declare all the inputs for the Mode1 that’s represented by the Fieldset.

43.2 Zend\Form\Form

The main component you’ll need and that most probably you’ve heard about already is Zend\Form\Form. The
Form-component is the main container for all elements of your web <form>. You are able to add single elements or
a set of elements in the form of a Fieldset, too.

127

Zend Framework 2 Documentation, Release 2.3.5

128 Chapter 43. Making use of Forms and Fieldsets

20

21

22

23

24

25

26

27

28

29

CHAPTER 44

Creating your first Fieldset

Explaining how the Zend\Form component works is best done by giving you real code to work with. So let’s jump
right into it and create all the forms we need to finish our Bl1og module. We start by creating a Fieldset that
contains all the input elements that we need to work with our B1og-data.

* You will need one hidden input for the id property, which is only needed for editting and deleting data.
* You will need one text input for the text property
* You will need one text input for the t it le property

Create the file /module/Blog/src/Blog/Form/PostFieldset.php and add the following code:

<?php
// Filename: /module/Blog/src/Blog/Form/PostFieldset.php
namespace Blog\Form;

use Zend\Form\Fieldset;

class PostFieldset extends Fieldset
{
public function ___construct ()
{
Sthis->add (array (
"type’ => "hidden’,
"name’ => ’id’

)) i

Sthis—->add (array (
"type’ => 'text’,
"name’ => ’'text’,
"options’ => array (
"label’ => 'The Text’
)
)) i

Sthis—->add (array (
"type’ => ’'text’,
"name’ => ’'title’,
"options’ => array (
"label’” => ’"Blog Title’

129

Zend Framework 2 Documentation, Release 2.3.5

As you can see this class is pretty handy. All we do is to have our class extend Zend\Form\Fieldset and then
we write a ___construct () method and add all the elements we need to the fieldset. This Fieldset can now be
used by as many forms as we want. So let’s go ahead and create our first Form.

130 Chapter 44. Creating your first Fieldset

20
21
22
23

24

CHAPTER 45

Creating the PostForm

Now that we have our PostFieldset in place, we need to use it inside a Form. We then need to add a Submit-
Button to the form so that the user will be able to submit the data and we’re done. So create the PostForm within
the same directory under /module/Blog/src/Blog/Form/PostForm and add the PostFieldset toit:

<?php
// Filename: /module/Blog/src/Blog/Form/PostForm.php
namespace Blog\Form;

use Zend\Form\Form;

class PostForm extends Form
{
public function __ construct ()
{
Sthis—->add (array (
"name’ => ’'post-fieldset’,
"type’ => ’"Blog\Form\PostFieldset’
)) i

Sthis—->add (array (
"type’ => 'submit’,
"name’ => ’'submit’,
"attributes’ => array (
"value’ => ’'Insert new Post’

}

And that’s our form. Nothing special here, we add our PostFieldset to the Form, we add a submit button to the
form and nothing more. Let’s now make use of the Form.

131

Zend Framework 2 Documentation, Release 2.3.5

132 Chapter 45. Creating the PostForm

S

CHAPTER 46

Adding a new Post

Now that we have the PostForm written we want to use it. But there are a couple more tasks that you need to do.
The tasks that are standing right in front of you are:

e create a new controller WriteController

* add PostService as a dependency to the WriteController

e add PostForm as a dependency to the WriteController

¢ create a new route blog/add that routes to the WriteController and its addAction ()

* create a new view that displays the form

46.1 Creating the WriteController

As you can see from the task-list we need a new controller and this controller is supposed to have two dependencies.
One dependency being the Post Service that’s also being used within our ListController and the other de-
pendency being the PostForm which is new. Since the PostForm is a dependency that the ListController
doesn’t need to display blog-data, we will create a new controller to keep things properly separated. First, register a
controller-factory within the configuration:

<?php
// Filename: /module/Blog/config/module.config.php
return array (

"db’ => array(/+* DB Config x/),
" service_manager’ => array(/x+ ServiceManager Config x/),
"view_manager’ => array(/#* ViewManager Config */),
"controllers’ => array (
"factories’ => array(
"Blog\Controller\List’ => ’'Blog\Factory\ListControllerFactory’,

"Blog\Controller\Write’ => ’'Blog\Factory\WriteControllerFactory’

"router’ => array(/+# Router Config x/)
)

Next step would be to write the WriteControllerFactory. Have the factory return the WriteController
and add the required dependencies within the constructor.

<?php
// Filename: /module/Blog/src/Blog/Factory/WriteControllerFactory.php
namespace Blog\Factory;

133

Zend Framework 2 Documentation, Release 2.3.5

use Blog\Controller\WriteController;
use Zend\ServiceManager\FactoryInterface;
use Zend\ServiceManager\ServiceLocatorInterface;

class WriteControllerFactory implements FactoryInterface

{

public function createService (ServiceLocatorInterface SservicelLocator)

{

SrealServicelLocator =

postService = SrealServicelLocator—->get ('Blog\Service\PostServicelnterface’);

SpostInsertForm

return new WriteController (
SpostService,
SpostInsertForm

)i

In this code-example there are a couple of things to be aware of. First, the WriteController doesn’t ex-
ist yet, but we will create this in the next step so we’re just assuming that it will exist later on. Second, we
access the FormElementManager to get access to our PostForm. All forms should be accessed through
the FormElementManager. Even though we haven’t registered the PostForm in our config files yet the
FormElementManager automatically knows about forms that act as invokables. As long as you have no

dependencies you don’t need to register them explicitly.

Next up is the creation of our controller. Be sure to type hint the dependencies by their interfaces and to add the

addAction ()!

<?php

// Filename: /module/Blog/src/Blog/Controller/WriteController.php

namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Form\FormInterface;
use Zend\Mvc\Controller\AbstractActionController;

class WriteController extends AbstractActionController

{

protected SpostService;

protected Spostform;

public function __construct (
PostServicelInterface SpostService,

FormInterface SpostForm

Sthis->postService = S$postService;
Sthis->postForm = S$postForm;

public function addAction ()
{
}

Right on to creating the new route:

134

Chapter 46.

Adding a new Post

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Zend Framework 2 Documentation, Release 2.3.5

<?php
// Filename:
return array (

/module/Blog/confi

g/module.config.php

" db’ => array(/## Db Config =*/),
"service_manager’ => array(/#x ServiceManager Config */),
"view_manager’ => array(/#x* ViewManager Config x/),
"controllers’ => array(/+# Controller Config x/),
"router’ => array (
"routes’ => array(
"blog’ => array (
"type’ => ’literal’,
"options’ => array (
"route’ => ’/blog’,
"defaults’ => array (
"controller’ => ’'Blog\Controller\List’,
"action’ => ’index’,

)

"may_terminate’ => true,
"child_routes’ => array/(
"detail’ => array(
"type’ => 'segment’,
"options’ => array(
" route’ => '’ /.1id’,
"defaults’ => array(
"action’ => ’detail’
)l
"constraints’ => array(
rid’ => ’\d+’
)
)
)I
"add’ => array(
"type’ => ’'literal’,
"options’ => array(
" route’ => '’ /add’,
"defaults’ => array (
"controller’ => ’'Blog\Controller\Write’,
"action’ => ’"add’

)

And lastly let’s create a dummy template:

<!-- Filename:

/module/Blog/view/blog/write/add.phtml ——>
<hl>WriteController: :addAction () </hl>
Checking the current status

If you try to access the new route localhost:8080/blog/add you're supposed to see the following error mes-
sage:

46.1. Creating the WriteController 135

20

21

22

23

24

25

26

Zend Framework 2 Documentation, Release 2.3.5

Fatal error: Call to a member function insert () on a non-object in
{libraryPath}/Zend/Form/Fieldset.php on line {lineNumber}

If this is not the case, be sure to follow the tutorial correctly and carefully check all your files. Assuming you are
getting this error, let’s find out what it means and fix it!

The above error message is very common and its solution isn’t that intuitive. It appears that there is an error within the
Zend/Form/Fieldset .php but that’s not the case. The error message let’s you know that something didn’t go
right while you were creating your form. In fact, while creating both the PostForm as well as the PostFieldset
we have forgotten something very, very important.

Note: When overwriting a ___construct () method within the Zend\Form-component, be sure to always call
parent::__ construct ()!

Without this, forms and fieldsets will not be able to get initiated correctly. Let’s now fix the problem by calling
the parents constructor in both form and fieldset. To have more flexibility we will also include the signature of the
__construct () function which accepts a couple of parameters.

<?php
// Filename: /module/Blog/src/Blog/Form/PostForm.php
namespace Blog\Form;

use Zend\Form\Form;

class PostForm extends Form
{
public function __ construct ($name = null, Soptions = array())

{

parent::__construct (Sname, S$Soptions);

Sthis—>add (array (

"name’ => ’'post-fieldset’,

"type’ => 'Blog\Form\PostFieldset’
)) i

Sthis—->add (array (
"type’ => ’submit’,
"name’ => 'submit’,
"attributes’ => array(
"value’ => ’'Insert new Post’

}

As you can see our PostForm now accepts two parameters to give our form a name and to set a couple of options.
Both parameters will be passed along to the parent. If you look closely at how we add the PostFieldset to the form
you’ll notice that we assign a name to the fieldset. Those options will be passed from the FormElementManager
when the PostFieldset is created. But for this to function we need to do the same step inside our fieldset, too:

<?php

// Filename: /module/Blog/src/Blog/Form/PostFieldset.php
namespace Blog\Form;

use Zend\Form\Fieldset;

class PostFieldset extends Fieldset

{

136 Chapter 46. Adding a new Post

20

21

22

23

24

25

26

27

28

29

31

32

34

Zend Framework 2 Documentation, Release 2.3.5

public function __construct (Sname = null,

{

parent::_ construct ($Sname,

Sthis—->add (array (
"type’ => ’'hidden’,
"name’ => ’id’

)) i

Sthis—->add (array (
"type’ => ’'text’,
"name’ => ’'text’,
"options’ => array (

Soptions);

"label’ => "The Text’

)) i

Sthis—->add (array (
"type’ => 'text’,
"name’ => 'title’,
"options’ => array(

"label’ => ’'Blog Title’

Soptions

Reloading your application now will yield you the desired result.

array())

46.1. Creating the WriteController

137

Zend Framework 2 Documentation, Release 2.3.5

138 Chapter 46. Adding a new Post

20

21

22

23

24

25

26

27

28

29

30

CHAPTER 47

Displaying the form

Now that we have our PostForm within our WriteController it’s time to pass this form to the view and have it
rendered using the provided ViewHelpers from the Zend\Form component. First change your controller so that

the form is passed to the view.

<?php

// Filename: /module/Blog/src/Blog/Controller/WriteController.php

namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Form\FormInterface;

use Zend\Mvc\Controller\AbstractActionController;

use Zend\View\Model\ViewModel;

class WriteController extends AbstractActionController

{

protected SpostService;

protected S$postForm;

public function __construct (
PostServicelnterface S$SpostService,

FormInterface SpostForm

Sthis->postService
Sthis->postForm

SpostService;
SpostForm;

public function addAction ()

{

return new ViewModel (array (
"form’ => $this->postForm

)) i

And then we need to modify our view to have the form rendered.

<!-— Filename: /module/Blog/view/blog/write/add.phtml ——>

<hl>WriteController: :addAction()</hl>
<?php
Sform = S$this->form;

Sform->setAttribute ("action’,

Sform->prepare () ;

Sthis—->url());

139

Zend Framework 2 Documentation, Release 2.3.5

echo $this->form()->openTag(Sform);
echo $this->formCollection (Sform);
echo Sthis->form()->closeTag();

Firstly, we tell the form that it should send its data to the current URL and then we tell the form to prepare () itself
which triggers a couple of internal things.

Note: HTML-Forms can be sent using POST and GET. ZF2s default is POST, therefore you don’t have to be explicit
in setting this option. If you want to change it to GET though, all you have to do is set the specific attribute prior to the

prepare () call.

Sform->setAttribute ('method’, ’'GET’);

Next we’re using a couple of ViewHe lpers which take care of rendering the form for us. There are many different
ways to render a form within Zend Framework but using formCollection () is probably the fastest one.

Refreshing the browser you will now see your form properly displayed. However, if we’re submitting the form all we
see is our form being displayed again. And this is due to the simple fact that we didn’t add any logic to the controller
yet.

Note: Keep in mind that this tutorial focuses solely on the OOP aspect of things. Rendering the form like this, without
any stylesheets added doesn’t really reflect most designers’ idea of a beautiful form. You’ll find out more about the

rendering of forms in the chapter of Zend\Form\View\Helper.

140 Chapter 47. Displaying the form

20

21

22

23

24

25

CHAPTER 48

Controller Logic for basically all Forms

Writing a Controller that handles a form workflow is pretty simple and it’s basically identical for each and every form
you have within your application.

1. You want to check if the current request is a POST-Request, meaning if the form has been sent
2. If the form has been sent, you want to:

* store the POST-Data within the Form

e check if the form passes validation
3. If the form passes validation, you want to:

* pass the form data to your service to have it stored

« redirect the user to either the detail page of the entered data or to some overview page
4. In all other cases, you want the form displayed, sometimes alongside given error messages

And all of this is really not that much code. Modify your WriteController to the following code:

<?php
// Filename: /module/Blog/src/Blog/Controller/WriteController.php
namespace Blog\Controller;

use Blog\Service\PostServiceInterface;

use Zend\Form\FormInterface;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class WriteController extends AbstractActionController

{

protected SpostService;
protected SpostForm;
public function __ construct (

PostServicelInterface SpostService,
FormInterface Spostlior

Sthis—->postService = $Spos

Sthis—->postForm = S

public function addAction ()
{

141

26

27

28

29

40

41

42

43

44

45

46

20

21

22

23

24

Zend Framework 2 Documentation, Release 2.3.5

Srequest = S$this->getRequest();

if (Srequest->isPost()) {
Sthis->postForm->setData ($Srequest->getPost ());

if (Sthis->postForm->isValid()) {

try {
Sthis—->postService->savePost ($this->postForm->getData());
return S$this->redirect () ->toRoute ('blog’);

&

} catch (\Exception Se) {
// Some DB Error happened, log it and let the user know

return new ViewModel (array (
"form’ => $this->postForm
)) i

This example code should be pretty straight forward. First we save the current request into a local variable. Then we
check if the current request is a POST-Request and if so, we store the requests POST-data into the form. If the form
turns out to be valid we try to save the form data through our service and then redirect the user to the route blog. If
any error occurred at any point we simply display the form again.

Submitting the form right now will return into the following error

Fatal error: Call to undefined method Blog\Service\PostService::savePost () in
/module/Blog/src/Blog/Controller/WriteController.php on line 33

Let’s fix this by extending our PostService. Be sure to also change the signature of the
PostServiceInterface!

<?php
// Filename: /module/Blog/src/Blog/Service/PostServicelnterface.php
namespace Blog\Service;

use Blog\Model\PostInterface;
interface PostServicelInterface

{
J ok k

* Should return a set of all blog posts that we can iterate over. Single entries of the array

*+ implementing \Blog\Model\PostInterface
*
* @return array|PostInterfacel]
*/
public function findAllPosts();

J ok k
* Should return a single blog post
*
* @param int S$id Identifier of the Post that should be returned
* @return PostInterface
*/
public function findPost ($id);

142 Chapter 48. Controller Logic for basically all Forms

25
26
27
28
29
30

31

33

20
21
22
23
24
25
26
27
28

29

31

32

34

35

37
38
39
40
41
o)
43
44
45

Zend Framework 2 Documentation, Release 2.3.5

J ok k

* Should save a given implementation of the PostInterface and return 1it.

* should be updated, if it’s a new Post it should be created.

*

* @param PostInterface S$blog
* @return PostInterface

*/

public function savePost (PostInterface $blog);

If it is an existing |

As you can see the savePost () function has been added and needs to be implemented within the PostService

now.

<?php
// Filename: /module/Blog/src/Blog/Service/PostService.php
namespace Blog\Service;

use Blog\Mapper\PostMapperInterface;

class PostService implements PostServicelnterface

{

VEE:
+ @var \Blog\Mapper\PostMapperInterface

*/

protected SpostMapper;

J ok k
* @param PostMapperInterface $postMapper

*/

public function __ construct (PostMapperInterface SpostMapper)

{

J ok k

*

*/

Sthis->postMapper = S$postMapper;

{@inheritDoc}

public function findAllPosts()

{

J ok *

*

*/

return S$this->postMapper->findAll();

{@inheritDoc}

public function findPost ($id)

{

J x

*

*/

return S$this->postMapper->find($id);

{@inheritDoc}

public function savePost (PostInterface Spost)

{

return Sthis->postMapper—>save (Spost);

143

46

20

21

22

23

24

25

26

27

28

29

19

20

21

22

Zend Framework 2 Documentation, Release 2.3.5

And now that we’re making an assumption against our postMapper we need
PostMapperInterface and its implementation, too. Start by extending the interface:

<?php
// Filename: /module/Blog/src/Blog/Mapper/PostMapperInterface.php
namespace Blog\Mapper;

use Blog\Model\PostInterface;

interface PostMapperInterface
{
J ko
* @param int/|string $id
* @return PostInterface
* @throws \InvalidArgumentException
*/
public function find($id);

J ok k
* @return array|PostInterfacel]
*/

public function findAll();

J ko
* @param PostInterface SpostObject
*
* @param PostInterface SpostObject
* @return PostInterface

@throws \Exception

3%

*/

public function save (PostInterface SpostObject);

And now the implementation of the save function.

<?php
// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
namespace Blog\Mapper;

use Blog\Model\PostInterface;

use Zend\Db\Adapter\AdapterInterface;

use Zend\Db\Adapter\Driver\ResultInterface;
use Zend\Db\ResultSet\HydratingResultSet;
use Zend\Db\Sgl\Insert;

use Zend\Db\Sgl\Sqgl;

use Zend\Db\Sgl\Update;

use Zend\Stdlib\Hydrator\HydratorInterface;

class ZendDbSglMapper implements PostMapperInterface
{
J hk
* @var \Zend\Db\Adapter\AdapterInterface
*/
protected S$dbAdapter;

J ok *
* @var \Zend\Stdlib\Hydrator\HydratorInterface

to extend

the

144 Chapter 48. Controller Logic for basically all Forms

23

24

25

26

27

28

29

31

32

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

Zend Framework 2 Documentation, Release 2.3.5

*/
protected Shydrator;

J ok ok
* @var \Blog\Model\PostInterface
*/

protected S$blogPrototype;

Vs
* @param AdapterInterface SdbAdapter
* @param HydratorInterface Shydrator
* @param PostInterface
*/
public function __ construct (
AdapterInterface SdbAdapter,
HydratorInterface Shydrator,
PostInterface SpostPrototype
) A

SpostPrototype

Sthis->dbAdapter $dbAdapter;
Sthis->hydrator = Shydrator;
Sthis->postPrototype = $postPrototype;

Vs
* @param int|string Sid
*
* @return PostInterface
* @throws \InvalidArgumentException
*/
public function find($id)
{

$sql = new Sqgl ($this->dbAdapter);

Sselect = S$sgl->select ('posts’);
Sselect->where (array (' id = 2’/ => $id));

Sstmt Ssgl->prepareStatementForSglObject ($select) ;

Sresult = Sstmt->execute();

if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()

return S$this->hydrator->hydrate ($result->current (), S$this->postPrototype);

throw new \InvalidArgumentException("Blog with given ID:{S$id} not found.");

J ok k
* @return array|PostInterfacel[]
*/

public function findAll ()

{

Ssqgl = new Sqgl ($this->dbAdapter);
Sselect = S$sgl->select ('posts’);
Sstmt

Sresult = Sstmt->execute();

Ssgl->prepareStatementForSqglObject ($select);

if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()) {
SresultSet = new HydratingResultSet ($this->hydrator, S$this->postPrototype);

145

&& Sresult->getAffectedRows

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125

Zend Framework 2 Documentation, Release 2.3.5

return SresultSet->initialize (Sresult);
return array();

J ok k
* @param PostInterface SpostObject
*
* @return PostInterface
* @throws \Exception
*/
public function save (PostInterface SpostObject)
{
SpostData = Sthis->hydrator->extract (SpostObject) ;
unset ($SpostDatal[’i1d’]1); // Neither Insert nor Update needs the ID in the array
if (SpostObject->getId()) |
// ID present, it’s an Update
Saction = new Update (' posts’);
Saction->set ($SpostData) ;
Saction->where (array(’id = ?’ => S$postObject->getId()));
} else {
// ID NOT present, it’s an Insert
Saction = new Insert ('posts’);
Saction->values ($postData);

}

$Ssql = new Sqgl ($this->dbAdapter);

Sstmt = $sgl->prepareStatementForSqglObject (Saction);
Sresult = Sstmt->execute();

if (Sresult instanceof ResultInterface) {
if (SnewlId = S$result->getGeneratedValue()) {
// When a value has been generated, set it on the object
SpostObject—>setId($newld);

return SpostObject;

throw new \Exception ("Database error");

The save () function handles two cases. The insert and update routine. Firstly we extract the Post-Object
since we need array data to work with Insert and Update. Then we remove the id from the array since this field
is not wanted. When we do an update of a row, we don’t update the id property itself and therefore it isn’t needed.
On the insert routine we don’t need an id either so we can simply strip it away.

After the 1d field has been removed we check what action is supposed to be called. If the Post-Object has an id
set we create a new Update-Object and if not we create a new Insert-Object. We set the data for both actions
accordingly and after that the data is passed over to the Sq1-Object for the actual query into the database.

At last we check if we receive a valid result and if there has been an id generated. If it’s the case we call the
setId ()-function of our blog and return the object in the end.

Let’s submit our form again and see what we get.

146 Chapter 48. Controller Logic for basically all Forms

Zend Framework 2 Documentation, Release 2.3.5

Catchable fatal error: Argument 1 passed to Blog\Service\PostService::savePost ()
must implement interface Blog\Model\PostInterface, array given,

called in /module/Blog/src/Blog/Controller/InsertController.php on line 33

and defined in /module/Blog/src/Blog/Service/PostService.php on line 49

Forms, per default, give you data in an array format. But our Post Service expects the format to be an implemen-
tation of the Post Interface. This means we need to find a way to have this array data become object data. If you
recall the previous chapter, this is done through the use of hydrators.

Note: On the Update-Query you’ll notice that we have assigned a condition to only update the row matching a given
id

Saction->where (array (’id = ?’ => S$postObject->getId()));

You’ll see here that the condition is: id equals ?. With the question-mark being the id of the post-object. In the same
way you could assign a condition to update (or select) rows with all entries higher than a given id:

Saction->where (array (’id > ?’ => S$postObject->getId()));

This works for all conditions. =, >, <, >= and <=

147

Zend Framework 2 Documentation, Release 2.3.5

148 Chapter 48. Controller Logic for basically all Forms

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

CHAPTER 49

Zend\Form and Zend\Stdlib\Hydrator working together

Before we go ahead and put the hydrator into the form, let’s first do a data-dump of the data coming from the form.
That way we can easily notice all changes that the hydrator does. Modify your WriteController to the following:

<?php
// Filename: /module/Blog/src/Blog/Controller/WriteController.php
namespace Blog\Controller;

use
use
use
use

Blog\Service\PostServicelnterface;
Zend\Form\FormInterface;
Zend\Mvc\Controller\AbstractActionController;
Zzend\View\Model\ViewModel;

class WriteController extends AbstractActionController

{

protected SpostService;

protected S$SpostForm;

public function __construct (
PostServicelInterface SpostService,
FormInterface S$SpostForm
Sthis->postService = S$postService;

Sthis—>postForm = S$postForm;

public function addAction ()
{

Srequest = S$this->getRequest () ;

if (Srequest->isPost()) {
Sthis->postForm->setData ($Srequest->getPost ());

if (Sthis->postForm->isValid()) {

try {
\Zend\Debug\Debug: :dump ($this->postForm->getData ()) ;die();
Sthis—->postService->savePost ($this—->postForm—->getData());
return S$this->redirect () ->toRoute(’blog’);

} catch (\Exception Se) {
// Some DB Error happened, log it and let the user know

149

41
42
43
44
45
46

4

20
21
22
23
24
25
26
27
28
29

Zend Framework 2 Documentation, Release 2.3.5

return new ViewModel (array (
"form’ => $this->postForm

)) i

With this set up go ahead and submit the form once again. You should now see a data dump like the following:

array (2) {
["submit"] => string(16) "Insert new Post"
["post—-fieldset"] => array(3) {
["id"] => string(0) ""
["text"] => string(3) "foo"
["title"] => string(3) "bar"

Now telling your fieldset to hydrate its data into an Post-object is very simple. All you need to do is to assign the

hydrator and the object prototype like this:

<?php
// Filename: /module/Blog/src/Blog/Form/PostFieldset.php
namespace Blog\Form;

use Blog\Model\Post;
use Zend\Form\Fieldset;
use Zend\Stdlib\Hydrator\ClassMethods;

class PostFieldset extends Fieldset
{
public function __ construct ($name = null, Soptions = array())

{

parent:: construct ($Sname, S$Soptions);

Sthis->setHydrator (new ClassMethods (false));
Sthis—->setObject (new Post ());

Sthis—->add (array (
"type’ => ’"hidden’,
"name’ => ’"id’

)) i

Sthis->add (array (
"type’ => 'text’,
"name’ => ’text’,
"options’ => array (
’label’ => 'The Text’

)) i

Sthis—->add (array (
"type’ => 'text’,
"name’ => ’'title’,
"options’ => array(
"label’” => ’'Blog Title’

150 Chapter 49. Zend\Form and Zend\Stdlib\Hydrator working together

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

As you can see we're doing two things. We tell the fieldset to be using the C1assMethods hydrator and then we tell
the fieldset that the default object to be returned is our B1og-Model. However, when you’re re-submitting the form
now you’ll notice that nothing has changed. We’re still only getting array data returned and no object.

This is due to the fact that the form itself doesn’t know that it has to return an object. When the form doesn’t know that
it’s supposed to return an object it uses the ArraySeriazable hydrator recursively. To change this, all we need to
do is to make our PostFieldset aso-called base_fieldset.

A base_fieldset basically tells the form “this form is all about me, don’t worry about other data, just worry
about me”. And when the form knows that this fieldset is the real deal, then the form will use the hydrator presented
by the fieldset and return the object that we desire. Modify your PostForm and assign the PostFieldset as
base_fieldset:

<?php
// Filename: /module/Blog/src/Blog/Form/PostForm.php
namespace Blog\Form;

use Zend\Form\Form;

class PostForm extends Form
{

public function __ construct ($name = null, Soptions = array())
{

parent::__ construct ($Sname, Soptions);

Sthis—->add (array (
"name’ => ’'post-fieldset’,
"type’ => ’'Blog\Form\PostFieldset’,
"options’ => array (
"use_as_base_fieldset’ => true

)) i

Sthis—>add (array (
"type’ => ’submit’,
"name’ => 'submit’,
"attributes’ => array(
"value’ => ’'Insert new Post’

}

Now submit your form again. You should see the following output:

object (Blog\Model\Post) #294 (3) {
["id":protected] => string(0) ""
["title":protected] => string(3) "foo"
["text":protected] => string(3) "bar"
}

You can now revert back your WriteController to its previous form to have the form-data passed through the
PostService.

<?php
// Filename: /module/Blog/src/Blog/Controller/WriteController.php

151

20
21

2
23
24
25
2
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
2
43
44
45

46

Zend Framework 2 Documentation, Release 2.3.5

namespace Blog\Controller;

use
use
use
use

Blog\Service\PostServicelInterface;
Zzend\Form\FormInterface;
Zend\Mvc\Controller\AbstractActionController;
Zend\View\Model\ViewModel;

class WriteController extends AbstractActionController

{

protected SpostService;

protected S$postForm;

public function __ construct (
PostServicelInterface SpostService,
FormInterface SpostForm
Sthis->postService = S$postService;

Sthis—->postForm = S$postForm;

public function addAction ()

{

Srequest = S$this->getRequest();

if (Srequest->isPost()) {
Sthis->postForm->setData ($Srequest->getPost ());

if ($this->postForm->isValid()) {

try {
Sthis->postService->savePost ($this->postForm->getData());
return Sthis->redirect () ->toRoute ('blog’);

} catch (\Exception Se) {
// Some DB Error happened, log it and let the user know

return new ViewModel (array (
"form’ => $this->postForm

)) i

If you send the form now you’ll now be able to add as many new blogs as you want. Great!

152

Chapter 49. Zend\Form and Zend\Stdlib\Hydrator working together

CHAPTER 50

Conclusion

In this chapter you’ve learned a great deal about the Zend\Form component. You’ve learned that
Zend\Stdlib\Hydrator takes a big part within the Zend\Form component and by making use of both compo-
nents you’ve been able to create an insert form for the blog module.

In the next chapter we will finalize the CRUD functionality by creating the update and delete routines for the blog
module.

153

Zend Framework 2 Documentation, Release 2.3.5

154 Chapter 50. Conclusion

CHAPTER 51

Editing and Deleting Data

In the previous chapter we’ve come to learn how we can use the Zend\Form- and Zend\Db-components to create

the functionality of creating new data-sets. This chapter will focus on finalizing the CRUD functionality by introducing
the concepts for editting and deleting data. We start by editting the data.

155

Zend Framework 2 Documentation, Release 2.3.5

156 Chapter 51. Editing and Deleting Data

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

CHAPTER 52

Binding Objects to Forms

The one fundamental difference between an insert- and an edit-form is the fact that inside an edit-form there is already
data preset. This means we need to find a way to get data from our database into the form. Luckily Zend\Form
provides us with a very handy way of doing so and it’s called data-binding.

All you need to do when providing an edit-form is to get the object of interest from your service and bind it to the
form. This is done the following way inside your controller.

<?php
// Filename: /module/Blog/src/Blog/Controller/WriteController.php
namespace Blog\Controller;

use Blog\Service\PostServiceInterface;

use Zend\Form\FormInterface;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class WriteController extends AbstractActionController

{

protected SpostService;
protected SpostForm;
public function __ construct (

PostServicelInterface SpostService,
FormInterface SpostForm

Sthis—->postService
Sthis—->postForm = $p

public function addAction ()
{

Srequest = S$this->getRequest();

if (Srequest->isPost()) {
Sthis->postForm->setData ($Srequest->getPost ());

if (Sthis->postForm->isValid()) {

try {
Sthis->postService->savePost ($this->postForm->getData());
return Sthis->redirect () ->toRoute (’blog’);

} catch (\Exception Se) {

157

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

70

71

72

3

74

Zend Framework 2 Documentation, Release 2.3.5

die ($e->getMessage ());
// Some DB Error happened, log it and let the user know

return new ViewModel (array (
"form’ => $this->postForm

)) i

public function editAction()

{

Srequest = S$this->getRequest();

Spost = S$this->postService->findPost ($this->params (’id’));

Sthis->postForm->bind ($post) ;

if (Srequest->isPost()) {
Sthis—->postForm->setData ($Srequest->getPost ());

if (Sthis->postForm->isValid()) {
try {
Sthis->postService->savePost ($post);

return Sthis->redirect () ->toRoute ('blog’);
} catch (\Exception S$e) {
die ($e—->getMessage ());

// Some DB Error happened, log it and let the user know

return new ViewModel (array (
"form’ => $this->postForm

)) i
}

Compared to the addAction () the editAction () has only three different lines. The first one is used to simply
get the relevant Post-object from the service identified by the id-parameter of the route (which we’ll be writing
soon).

The second line then shows you how you can bind data to the Zend\Form-Component. We’re able to use an object
here because our PostFieldset will use the hydrator to display the data coming from the object.

Lastly instead of actually doing $form->getData () we simply use the previous $post-variable since it will be
updated with the latest data from the form thanks to the data-binding. And that’s all there is to it. The only things we
need to add now is the new edit-route and the view for it.

158 Chapter 52. Binding Objects to Forms

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

CHAPTER 53

Adding the edit-route

The edit route is a normal segment route just like the route blog/detail. Configure your route config to include

the new route:

<?php

// Filename: /module/Blog/config/module.config.php

return array (

" db’ => array (
"service_manager’ => array (
’view_manager’ => array (
"controllers’ => array (
"router’ => array (

"routes’ => array (
"blog’ => array(
"type’ => "lite
"options’ => ar
"route’
"defaults’
"contro
"action

)I
"may_terminate’
’child_routes’
"detail’ =>
Vtypef
"option
"ro
’de

)y

"constraints’

)y

/#++ Db Config =*/),

/#*+ ServiceManager Config x/),

/** ViewManager Config #*/),

/##% ControllerManager Config+ */),

ral’,

ray (

=> ' /blog’,
=> array (

ller’ => ’'Blog\Controller\List’,

4 => ’index’,

=> true,

=> array (
array (

=> ’segment’,
s’ => array (

ute’ => ' /:id’,

faults’ => array (

"action’ => ’"detail’

rid’ => \d+’

"add’” => array(

!type!

=> array (

=> ’'literal’,
"options’ => array(
"route’ => ' /add’,
"defaults’ => array(
"controller’ => ’'Blog\Controller\Write’,
"action’ => "add’

159

41

42

43

44

45

46

47

48

49

50

Zend Framework 2 Documentation, Release 2.3.5

) 4
"edit’ => array(
"type’ => ’'segment’,
"options’ => array(
"route’ => !’ /edit/:id’,
"defaults’ => array(

"controller’ => ’'Blog\Controller\Write’,

"action’ => ’'edit’
)
"constraints’ => array(
rid’ => "\d+’

160 Chapter 53. Adding the edit-route

CHAPTER 54

Creating the edit-template

Next in line is the creation of the new template blog/write/edit:

All that is really changing on the view-end is that you need to pass the current id to the url () view helper. To
achieve this you have two options. The first one would be to pass the ID to the parameters array like

Sthis->url (’blog/edit’, array(’id’ => $id));

The downside is that $1d is not available as we have not assigned it to the view. The Zend\Mvc\Router-component
however provides us with a nice functionality to re-use the currently matched parameters. This is done by setting the
last parameter of the view-helper to t rue.

Sthis->url (‘blog/edit’, array(), true);

Checking the status

If you go to your browser and open up the edit form at localhost:8080/blog/edit /1 you’ll see that the form
contains the data from your selected blog. And when you submit the form you’ll notice that the data has been changed
successfully. However sadly the submit-button still contains the text Insert new Post. This can be changed
inside the view, too.

<!-— Filename: /module/Blog/view/blog/write/add.phtml -->
<hl>WriteController::editAction()</hl>

<?php

Sform = $this->form;

Sform->setAttribute (’action’, S$this->url(’blog/edit’, array(), true));
Sform->prepare () ;

Sform->get (/' submit’)->setValue (' Update Post’);

echo $this->form()->openTag(Sform);
echo Sthis->formCollection(Sform);
echo Sthis->form()->closeTag();

161

Zend Framework 2 Documentation, Release 2.3.5

162 Chapter 54. Creating the edit-template

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

CHAPTER 55

Implementing the delete functionality

Last but not least it’s time to delete some data.
controller:

<?php
// Filename:
return array (

7 db’ => array(/x*
"service_manager’ => array(/+*
"view_manager’ => array(/++#
"controllers’ => array (
"factories’ => array(

"Blog\Controller\List’
"Blog\Controller\Write’
"Blog\Controller\Delete’

)I
"router’
"routes’
"post’
4 typel
"options’
"route’
"defaults’

=> array (
=> array (
=> array (
=>
=> array (

"controller’

"action’

)I
"may_terminate’
"child_routes’
"detail’” =>
!type!
"options’
"route’

=>

"defaults’
"action’

)y

"constraints’

!idl
)
)
)I
"add’ => array(
"type’ =>

"literal’,

We start this process by creating a new route and adding a new

/module/Blog/config/module.config.php

Db Config =*/),
ServiceManager Config =*/),
ViewManager Config */),

=> ’'Blog\Factory\ListControllerFactory’,
=> ’"Blog\Factory\WriteControllerFactory’,
=> ’"Blog\Factory\DeleteControllerFactory’

=> ’/blog’,
=> array (

=> ’'Blog\Controller\List’,
=> ’index’,

=> true,

=> array (
array (
"segment’,
=> array (

=> ' /.:id’,
=> array (
=> ’detail’

=> array (

=> \d+’

"literal’,

163

41

42

43

44

45

46

4

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

Zend Framework 2 Documentation, Release 2.3.5

)i

)y

"options’ => array(
"route’ => '’ /add’,
"defaults’ => array (
"controller’ => ’'Blog\Controller\Write’,
"action’ => "add’

"edit’ => array(

)y

"type’ => ’'segment’,
"options’ => array(

"route’ => !’ /edit/:id’,

"defaults’ => array (
"controller’ => ’'Blog\Controller\Write’,
"action’ => ’edit’

)
"constraints’ => array(
rid’ => "\d+’

"delete’ => array (

"type’ => 'segment’,
"options’ => array (
"route’ => ' /delete/:id’,
"defaults’ => array (
"controller’ => ’'Blog\Controller\Delete’,
"action’ => ’'delete’
)I
"constraints’ => array (
rid" => "\d+’

Notice here that we have assigned yet another controller Blog\Controller\Delete. This is due to the fact that
this controller will not require the PostForm. A DeleteFormis a perfect example for when you do not even need
to make use of the Zend\Form component. Let’s go ahead and create our controller first:

The Factory

<?php
// Filename: /module/Blog/src/Blog/Factory/DeleteControllerFactory.php

namespace Blog\Factory;

use Blog\Controller\DeleteController;
use Zend\ServiceManager\FactoryInterface;
use Zend\ServiceManager\ServiceLocatorInterface;

class DeleteControllerFactory implements FactoryInterface

{

J ko
* Create service

*

164

Chapter 55. Implementing the delete functionality

20

21

22

23

24

25

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2

43

Zend Framework 2 Documentation, Release 2.3.5

public function createService (ServiceLocatorInterface Sservicelocator)

{

* @param ServiceLocatorInterface $serviceLocator

*

* @return mixed

*/

SrealServiceLocator = $servicelLocator->getServicelLocator();
SrealServiceLocator->get (' Blog\Service\PostServicelnterface’);

SpostService

return new DeleteController (SpostService);

The Controller

<?php
// Filename: /module/Blog/src/Blog/Controller/DeleteController.php

namespace Blog\Controller;

use Blog\Service\PostServiceInterface;
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class DeleteController extends AbstractActionController

{

/%

* @var \Blog\Service\PostServicelInterface

*/

protected SpostService;

public function __ construct (PostServicelnterface SpostService)

{

Sthis—->postService = S$postService;

public function deleteAction()

{

try {

Spost = Sthis->postService->findPost (Sthis->params(’id’));

} catch (\InvalidArgumentException S$Se) {
return Sthis->redirect () ->toRoute('blog’);
Srequest = S$this->getRequest();

if (Srequest->isPost()) {
$del = Srequest->getPost ('delete_confirmation’,

if (Sdel === 'yes’) {
$this—>postService->deletePost (Spost) ;

return Sthis->redirect () ->toRoute('blog’);

return new ViewModel (array (
"post’ => S$post
)) i

"no’);

165

44

45

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

As you can see this is nothing new. We inject the Post Service into the controller and inside the action we first
check if the blog exists. If so we check if it’s a post request and inside there we check if a certain post parame-
ter called delete_confirmation is present. If the value of that then is yes we delete the blog through the
PostService‘sdeletePost () function.

When you’re writing this code you’ll notice that you don’t get typehints for the deletePost () function because we
haven’t added it to the service / interface yet. Go ahead and add the function to the interface and implement it inside
the service.

The Interface

<?php
// Filename: /module/Blog/src/Blog/Service/PostServicelnterface.php
namespace Blog\Service;

use Blog\Model\PostInterface;

interface PostServicelnterface
{
J ok k
* Should return a set of all blog posts that we can iterate over. Single entries of the array
+ implementing \Blog\Model\PostInterface
*
* @return array|PostInterfacel]
*/
public function findAllPosts();

J ok k
* Should return a single blog post
*
* @param int S$id Identifier of the Post that should be returned
* @return PostInterface
*/

public function findPost ($id);

J ok *
* Should save a given Implementation of the PostInterface and return it. If it is an existing .
* should be updated, if it’s a new Post it should be created.
*
* @param PostInterface $blog
* @return PostInterface
*/

public function savePost (PostInterface $blog);

VEE:
Should delete a given implementation of the PostInterface and return true if the deletion ha
* successful or false if not.

*

*

* @param PostInterface $blog
* @return bool

*/

public function deletePost (PostInterface S$blog);

The Service

166 Chapter 55. Implementing the delete functionality

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Zend Framework 2 Documentation, Release 2.3.5

<?php
// Filename: /module/Blog/src/Blog/Service/PostService.php
namespace Blog\Service;

use Blog\Mapper\PostMapperInterface;
use Blog\Model\PostInterface;

class PostService implements PostServicelInterface
{
J ok k
* @var \Blog\Mapper\PostMapperInterface
*/
protected SpostMapper;

J ok *
* @param PostMapperInterface SpostMapper
*/
public function __ construct (PostMapperInterface SpostMapper)

{
Sthis->postMapper = S$postMapper;

J x
* {@inheritDoc}
*/
public function findAllPosts()

{
return S$this->postMapper->findAll();

J ok k
* {@inheritDoc}
*/
public function findPost ($id)

{
return S$this->postMapper->find($id);

Ve
* {@inheritDoc}
*/
public function savePost (PostInterface S$post)

{

return S$this->postMapper—->save (Spost);

/ x %k
* {@inheritDoc}
*/
public function deletePost (PostInterface Spost)
{
return S$this->postMapper->delete (Spost);

Now we assume that the PostMapperInterface has a delete ()-function. We haven’t yet implemented this

one so go ahead and add it to the PostMapperInterface.

167

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Zend Framework 2 Documentation, Release 2.3.5

<?php

// Filename:

namespace Blog\Mapper;

use

Blog\Model\PostInterface;

interface PostMapperInterface

{

Ve
* @param int|string $id
* @return PostInterface
* @throws \InvalidArgumentException
*/
public function find($id);

J ok ok
* @return array|PostInterfacel[]
*/

public function findAll();

J ok *
* @param PostInterface SpostObject
*
* @param PostInterface SpostObject
* @return PostInterface
* @throws \Exception
*/

public function save (PostInterface SpostObject);

VEz:
* @param PostInterface SpostObject
*
* @return bool
* @throws \Exception

*/

/module/Blog/src/Blog/Mapper/PostMapperInterface.php

public function delete (PostInterface SpostObject);

Now that we have declared the function inside the interface it’s time to implement it inside our ZendDbSglMapper:

<?php
// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
namespace Blog\Mapper;

use
use
use
use
use
use
use
use
use

Blog\Model\PostInterface;
Zend\Db\Adapter\AdapterInterface;
Zend\Db\Adapter\Driver\ResultInterface;
Zend\Db\ResultSet\HydratingResultSet;
Zend\Db\Sgl\Delete;

Zend\Db\Sgl\Insert;

Zend\Db\Sqgl\Sql;

Zend\Db\Sgl\Update;
Zend\Stdlib\Hydrator\HydratorInterface;

class ZendDbSglMapper implements PostMapperInterface

{

J ko
+ @var \Zend\Db\Adapter\AdapterInterface
*/

168

Chapter 55.

Implementing the delete functionality

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

Zend Framework 2 Documentation, Release 2.3.5

protected
protected
protected

J ok *
* @param
* @param
* @param

*/

SdbAdapter;

Shydrator;

SpostPrototype;
AdapterInterface SdbAdapter

HydratorInterface Shydrator
PostInterface SpostPrototype

public function __ construct (
AdapterInterface SdbAdapter,
HydratorInterface Shydrator,
PostInterface SpostPrototype

Sthis-—
Sthis-—
Sthis-

Ve

>dbAdapter = S$dbAdapter;
>hydrator = Shydrator;
>postPrototype = $postPrototype;

* {@inheritDoc}

*/

public function find($id)

{

$sql = new Sgl (Sthis->dbAdapter);

Sselect = $sgl->select ('posts’);
Sselect->where (array (' id = 2’ => $id));

Sstmt = $sqgl->prepareStatementForSqglObject (Sselect);

Sresult = S$stmt->execute();

if (Sresult instanceof ResultInterface && Sresult->isQueryResult () && Sresult->getAffectedR
return Sthis->hydrator->hydrate ($result->current (),

Sthis->postPrototype) ;

throw new \InvalidArgumentException("Blog with given ID:{$id} not found.");

J ok k

* {@inheritDoc}

*/

public function findAll ()

{
Ssqgl

= new Sqgl (Sthis->dbAdapter);

Sselect = $sqgl->select ('posts’);

Sstmt

Ssqgl->prepareStatementForSqglObject ($select);

Sresult = S$stmt->execute();

if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()) {
SresultSet = new HydratingResultSet ($Sthis->hydrator,

return SresultSet—->initialize($Sresult);

return array();

Sthis->postPrototype);

169

78

79

80

81

83

84

86

87

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

119

120

121

122

123

124

125

126

127

128

129

2

Zend Framework 2 Documentation, Release 2.3.5

J ko

*

*/

{@inheritDoc}

public function save (PostInterface SpostObject)

{

J x

*

*/

SpostData = S$this->hydrator->extract (SpostObject);
unset (SpostDatal[’id’]); // Neither Insert nor Update needs the ID in the array

if ($postObject->getId()) {
// ID present, it’s an Update
Saction = new Update ('post’);
Saction->set ($SpostData) ;
Saction->where (array(’id = ?’ => SpostObject->getId()));

} else {
// ID NOT present, it’s an Insert
Saction = new Insert ('post’);

Saction->values ($postData);

$sql = new Sqgl (Sthis->dbAdapter);
Sstmt = $sgl->prepareStatementForSqglObject (Saction);
Sresult = S$stmt->execute();

if (Sresult instanceof ResultlInterface) {
if ($newId = Sresult->getGeneratedValue()) {
// When a value has been generated, set it on the object
SpostObject—->setId ($newld) ;

return SpostObject;

throw new \Exception ("Database error");

{@inheritDoc}

public function delete (PostInterface SpostObject)

{

Saction = new Delete (’posts’);
Saction->where (array(’id = ?’ => SpostObject->getId()));

$sql = new Sqgl (Sthis->dbAdapter);
Sstmt = $sgl->prepareStatementForSqglObject (Saction);
Sresult = S$stmt->execute();

return (bool) Sresult->getAffectedRows () ;

The Delete statement should look fairly similar to you as this is basically the same deal as all other queries we’ve
created so far. With all of this set up now we’re good to go ahead and write our view file so we can delete blogs.

<!-— Filename: /module/Blog/view/blog/delete/delete.phtml ——>
<hl>DeleteController: :deleteAction()</hl>

170

Chapter 55. Implementing the delete functionality

Zend Framework 2 Documentation, Release 2.3.5

<p>
Are you sure that you want to delete
"<?php echo $this->escapeHtml ($Sthis->post->getTitle()); ?>' by
"<?php echo $this->escapeHtml ($this->post->getText ()); ?>'7?

</p>

<form action="<?php echo S$this->url(’blog/delete’, array(), true) ?>" method="post">
<input type="submit" name="delete_confirmation" value="yes">
<input type="submit" name="delete_ confirmation" wvalue="no">

</form>

171

Zend Framework 2 Documentation, Release 2.3.5

172 Chapter 55. Implementing the delete functionality

CHAPTER 56

Summary

In this chapter we’ve learned how data binding within the Zend\Form-component works and through it we have
finished our update-routine. Then we have learned how we can use HTML-Forms and checking it’s data without
relying on Zend\Form, which ultimately lead us to having a full CRUD-Routine for the Blog example.

In the next chapter we’ll recapitulate everything we’ve done. We’ll talk about the design-patterns we’ve used and
we’re going to cover a couple of questions that highly likely arose during the course of this tutorial.

173

Zend Framework 2 Documentation, Release 2.3.5

174 Chapter 56. Summary

CHAPTER 57

Reviewing the Blog-application

Throughout the past seven chapters we have created a fully functional CRUD-Application using music-blogs as an
example. While doing so we’ve made use of several different design-patterns and best-practices. Now it’s time to
reiterate and take a look at some of the code-samples we’ve written. This is going to be done in a Q&A fashion.

* Do we always need all the layers and interfaces?
¢ ‘Having many objects, won’t there be many code-duplication?¢_

* Why are there so many controllers?

57.1 Do we always need all the layers and interfaces?

Short answer: no.

Long answer: The importance of interfaces goes up the bigger your application becomes. If you can foresee that your
application will be used by other people or is supposed to be extendable, then you should strongly consider to always
code against interfaces. This is a very common best-practice that is not tied to ZF2 specifically but rather aimed at
strict OOP programming.

The main role of the multiple layers that we have introduced (Controller -> Service -> Mapper -> Backend) are to
get a strict separation of concerns for all of our objects. There are many resources who can explain in detail the big
advantages of each layer so please go ahead and read up on them.

For a very simple application, though, you’re most likely to strip away the Mapper-layer. In practice all the code from
the mapper layer often resides inside the services directly. And this works for most of the applications but as soon as
you plan to support multiple backends (i.e. open source software) or you want to be prepared for changing backends,
you should always consider including this layer.

57.2 Having many objects, won’t there be much code-duplication?

Short answer: yes.

Long answer: there doesn’t need to be. Most code-duplication would come from the mapper-layer, too. If you take a
closer look at the class you’ll notice that there’s just two things that are tied to a specific object. First, it is the name of
the database-table. Second, it is the object-prototype that’s passed into the mapper.

The prototype is already passed into the class from the ___construct () function so that’s already interchangeable.
If you want to make the table-name interchangeable, too, all you need to do is to provide the table-name from the
constructor, too, and you have a fully versatile db-mapper-implementation that can be used for pretty much every
object of your application.

175

Zend Framework 2 Documentation, Release 2.3.5

You could then write a factory class that could look like this:

<?php

class NewsMapperFactory implements FactoryInterface
{
public function createService (ServicelocatorInterface S$servicelocator)
{
return new ZendDbSglMapper (
SserviceLocator—>get (' Zend\Db\Adapter\Adapter’), // DB-Adapter

"news’, // Table—Name
new ClassMethods (false), // Object-Hydrator
new News () // Object—-Prototype

57.3 Why are there so many controllers?

Looking back at code-examples from a couple of years back you’ll notice that there was a lot of code inside each
controller. This has become a bad-practice that’s known as Fat Controllers or Bloated Controllers.

The major difference about each controller we have created is that there are different dependencies. For example,
the WriteController required the PostForm as well as the Post Service while the DeleteController
only required the Post Service. In this example it wouldn’t make sense to write the deleteAction () into the
WriteController because we then would needlessly create an instance of the PostForm which is not required.
In large scale applications this would create a huge bottleneck that would slow down the application.

Looking at the DeleteController as well as the ListController you’ll notice that both controllers have the
same dependency. Both require only the Post Service so why not merge them into one controller? The reason here
is for semantical reasons. Would you look for a deleteAction () inaListController? Most of us wouldn’t
and therefore we have created a new class for that.

In applications where the InsertForm differs from the UpdateForm you’d always want to have two different con-
trollers for each of them instead of one united WriteController like we have in our example. These things heavily
differ from application to application but the general intent always is: keep your controllers slim / lightweight!

57.4 Do you have more questions? PR them!

If there’s anything you feel that’s missing in this FAQ, please PR your question and we will give you the answer that
you need!

176 Chapter 57. Reviewing the Blog-application

CHAPTER 58

Getting Started with Zend Framework 2

This tutorial is intended to give an introduction to using Zend Framework 2 by creating a simple database driven
application using the Model-View-Controller paradigm. By the end you will have a working ZF2 application and you
can then poke around the code to find out more about how it all works and fits together.

We will develop this application using Zend Studio 10 and run the application on Zend Server 6.

Zend Server is a PHP application server that includes the PHP runtime. It comes in both free and paid editions, both
of which provide lots of features; however the most interesting ones for developers are the dead-simple environment
setup and the ability to investigate application problems, including profiling performance and memory issues with
code-tracing abilities. Zend Server also ships with Zend Framework 2, which is convenient.

Zend Studio is a PHP-focused IDE based on Eclipse that comes in two flavours: the free Eclipse PDT and Zend
Studio, a paid-for product that provides enhanced features and support options. Usefully, Eclipse PDT provides Zend
Framework 2 support out of the box along with Zend Server integration. You don’t get the mobile features though, or
integrated PHP Documenter & PHPUnit features.

In this tutorial we’re going to build a small, simple database application to manage a list of to-do items. We’ll need a
list of items along with the ability to add, edit and delete items. We’ll use a database to store information about each
to-do item.

58.1 Installation

Firstly you’ll need to install Zend Server and Eclipse PDT. If you have a license for Zend Studio 10, you can use that
too. You can download the latest version of Zend Server. Grab Eclipse PDT or Zend Studio (which comes with a free
30-day trial) and install it. In this tutorial we will use the phrase Zend Studio, but it will all work with Eclipse PDT
too.

On Linux, you can install Zend Server with either Apache or Nginx. This tutorial has assumed that you have installed
the Apache version. The only important difference for this tutorial is the creation of rewrite rules.

Once you have installed Zend Server, enter the administration application, which can usually be found at
http://localhost:10081/. Set the time zone in Configuration -> PHP, and then restart the server (third button from
the right in the top right corner).

177

http://www.zend.com/en/products/server/downloads?src=zft
http://www.zend.com/en/company/community/pdt/downloads?src=zft
http://www.zend.com/en/products/studio/downloads?src=zft
http://localhost:10081/

Zend Framework 2 Documentation, Release 2.3.5

e e e =
® OO /[icathost10081/Zendser x \ e
&« C [} localhost:10081/ZendServer/Extensions/phpExtensions/ el =
ENTERPRISE TRIAL Overview Applications Configurations Administration administrator 19:03
Components. PHP Studio Integration Monitor.
- A\ Restart is roquired x
Configurations » PHP
Zend Server has to be restarted to apply changes made to the

e | Enable Disable configuration or a component.
) Name « Status Version Description Messages

date 5.4.16 Date Module Info: The directive 'date.timezone' value has been changed from 'Eu

Directives Messages

Allows you to get the date from the server where your PHP scripts are running. You can use this function to format the date in various ways.

date.default_latitude

31.7667
Default value for latitude parameter

date.sunrise_zenith

90.583333
Defautt value for sunrise-zenith paramater

date.timezone

The default timezone used by all date/time functions if the TZ Europe)London
et

environment variable isn't s

date default_longitude
Default value for longitude parameter

35.2333

You will also need to install MySQL using your Linux distribution’s package manager or from mysql.com if you are
on Windows. For OS X users, Zend Server already includes MySQL for you.

On OS X, the document root for the Zend Server installed Apache is at /usr/local/zend/apache2/htdocs.
On Linux, Zend Server uses the web server supplied by the distribution. On Ubuntu 12.04, with Apache, it is

/var/www and with nginx it is at /usr/share/nginx/html. On Windows, it is C:\Program Files
(x86) \Zend\Apache2\htdocs.

Ensure that this folder is writeable by your own user. The easiest way to do this is to change the owner of the html
directory. On a Mac, this would be:

$ sudo chown {your username} /usr/local/zend/apache2/htdocs

58.2 Getting Started

We start by creating a new Local PHP project in Zend Studio. Open Zend Studio and select File -> New -> Local PHP
Project. This will display the New Local PHP Project wizard as shown:

178 Chapter 58. Getting Started with Zend Framework 2

Zend Framework 2 Documentation, Release 2.3.5

Mew Local PHP Project

Create a Local PHP Project

Create a new PHP project

Project Name: ' MyTaskList

Location: |fusr.n'|ucal,fzend,fapachez fhtdocs [+ |
Content: () Basic (+) Zend Framework

Version: |_ Zend Framework 2.2.1 [built-in] s
@ < Back [Mext= | | Cancel | | Finish |

Enter MyTaskList as the Project Name and set the location to the Zend Server document root. Due to the integration
between Zend Server and Zend Studio, you should find the correct directory as an option in the drop down list. Select
Zend Framework as the Content and you can then select which version of Zend Framework to use. Select the latest
Zend Framework 2 version and press Next.

The next step is the Launch Settings tab. Choose Launch URL and set the host to http://localhost (or
http://localhost: 10088 on OS X) and the Base Path to /MyTaskList/:

58.2. Getting Started 179

http://localhost
http://localhost:10088

Zend Framework 2 Documentation, Release 2.3.5

Mew Local PHP Project

MNew PHP Project

Enter the server configuration information.

() Launch CLI Application (*) Launch URL () Launch with Zend Application Deployment

L

The project Base Path is used to form the launch URL's for the run and debug modes. This option can be changed later
in the project settings by going to the PHP Server Preference page.

Host: | http:/ flocalhost: 10088

Base Path: I;MyTaskLisl,f

Project URL: http://localhost: 10088/ MyTaskList/

@ | < Back | | MNext = | | Cancel | | Finish |

Press Finish to create your new project in Zend Studio.

Zend Studio has now created a default Zend Framework project for us:

180 Chapter 58. Getting Started with Zend Framework 2

Zend Framework 2 Documentation, Release 2.3.5

% PHP - MyTaskList/README.md - Zend Eclipse for PHP Developers - [Applications/zend-eclipse-php/zend-eclipse-php.app/Contents/MacOS/workspace

i o 5 LR R R P ST = |&ene
H PHP Explorer 58 = O|(B reADME.md 28 SO|[E£ mv gzou = =0
— <;==(»> = 1 ZendSkeletonApplication An outline is not available.

Y@MvTaskLlsl :

¥ (B config 4 Introduction

b (# data [

» Emodule 6 This is a simple, skeleton application using the ZF2 MVC layer and module

b £ public 7 systems. This application is meant to be used as a starting place for those

» (B vendor & looking to get their feet wet with ZF2.

2| composer.json 19

5 composer.lock 11 Installation
|=| composer.phar 12 mmmmmm

P 8] init_autoloader.php 13
D LICENSE.txt 14 Using Composer {recommended)
K% README.md L5 = o
» mJavaScript Resources 16 The recommended way to get a working copy of this project is to clone the repository
b E,PHP Include Path i.' and use 'composer’ to install dependencies using the “create-project’ command:
¥ B PHP Language Library 19 curl -s https://getcomposer.org/installer | php --
20 php composer.phar create-project -sdev --repository-url="http://packages.zendfra
21

272 Alternately, clone the repository and manually invoke “composer” using the shipped
23 "composer.phar”:
24
25 cd my/project/dir
26 git clone git://github.com/zendframework/ZendSkeletonApplication.git
27 cd ZendSkeletonApplication
28 php composer.phar self-update
nhn comnnser. nhar install

[2{ Problems [E] console | 45 Remote Systems | 4 Targets | 5 Debug Output 53 =0

Writable Insert 1:1

This is a standard Zend Framework 2 Skeleton Application and is a great starting point for a new ZF2 application.

To set up Zend Studio to run this project, select Run -> Run Configurations... and double click on PHP Web Appli-
cation in the left hand list. Enter MyTaskList as the name, Local Zend Server as the PHP Server and then click the
Browse button and select index.php within the public folder of the MyTaskList project. Uncheck Auto Generate in the
URL section and then set the path to /MyTaskList/public and press Apply and then Close:

58.2. Getting Started 181

Zend Framework 2 Documentation, Release 2.3.5

Run Configurations

Create, manage, and run configurations @

5 [T i
RREER . | = Name: MyTaskList
type filter text Server Debugger} Deploymenq =] Common\I
[&] PHP CLI Applicaticn Server
¥ B PHP Web Application ; - - ;
£ MyTaskList PHP Server: | Local Zend Server || New | | Configure...
File
IMyTaskList/public/index.php I' Browse]
URL
] Aute Generate
URL: http://localhost: L0088/ /MyTaskList/public
Apply Revert

Filter matched 3 of 3 items

@ | Close | | Run

To test that all is working, press the run button in the toolbar (white arrow in a green circle). The ZF2 Skeleton
Application home page will display in a new tab within Zend Studio:

PHP - http://localhost: 10088 /MyTaskList /public - Zend Eclipse for PHP Developers - /Applications/zend-eclipse-php/zend-eclipse-php.app/Contents/MacOS/workspace

|rs- R R R
[PHP Explorer 52 = El]f README.md (0 http:/ flocalhost: 10088/ MyTaskList/public 53 SB|Em fEou B =0
‘ 5% v” & [http:/localhost: 10088/ MyTasKList/ public/ Tv] b An outline is not available.

¥ (E MyTaskList
» (B config
> (Bdata
> (#module
» G public
» (Bvendor

composer_json
|2 composer.lock
=) composer.phar
¥ [8] init_autoloader.php.

Welcome to Zend
P i Javascript Resources
SR, Framework 2
Congratulations! You have successfully installed the ZF2 Skeleton
Application. You are currently running Zend Framework version 2.2.1.
This skeleton can serve as a simple starting point for you to begin
building your application on ZF2

Fork Zend Framework 2 on GitHub »

[£: Problems fE Console fﬁ Remote Systems fé?é Targets fﬂ& Debug Output 5% =8

o |

You can also navigate to the same URL (http://localhost:10088/MyTaskList/public/ on a Mac) in any browser.

We have successfully installed both Zend Server and Zend Studio, created a project and tested it. Let’s start by looking
at what we have so far in our Zend Framework project.

182 Chapter 58. Getting Started with Zend Framework 2

http://localhost:10088/MyTaskList/public/

CHAPTER 59

A quick tour of the skeleton application

The skeleton application provides a lot of files, so it’s worth having a quick high-level look at what has been generated
for us. There are a number of high level directories created for us (along with Composer and other support files):

Folder Information stored
config | Application-level configuration files.
data Data files generated by the application, such as caches.

module | The source files that make up this application are stored within separate modules within this folder.
public | The web server’s document root. All files served directly by the web server are in here.
vendor | Third party libraries.

One of the key features of Zend Framework 2 is its module system. This provides organisation within your application;
all application code lives within a module. The skeleton provides the Application module for bootstrapping, error and
routing configuration. It also provides the application-level controllers for the home page and error display. The
Application module contains these key folders:

Folder Information stored
config Module-specific configuration files.
language Translation files.

src/ApplicgtRHR files for this module, including controller and model files. The controller for the home
page, IndexController.php, is provided.

view/applidaV¥iesnscripts for each controller action.

view/error | Error view scripts for 404 and generic errors.

view/layout Layout view scripts. These contain the common HTML shared by a number of pages within the
website. An initial default file, layout . phtml, is provided.

Modules are simply namespaces containing a top level Module class. They are intended to be reusable and no
additional constraints are placed on how they are organised. An application consists of multiple modules, both third
party and application specific, with the list of modules to load stored in config/application.config.php.

59.1 The dispatch cycle

Zend Framework 2 applications use the Front Controller design pattern. This means that all requests are directed to
a single entry point, the public/index.php file. This is done using a .htaccess file containing rewrite rules that
serves all static files (such as CSS & Javascript) and directs all other requests to the index.php. The index.php file
initialises the autoloader and then bootstraps Zend\Mvc\Application before finally running the application. The
process looks like this:

183

http://getcomposer.org
http://www.martinfowler.com/eaaCatalog/frontController.html

Zend Framework 2 Documentation, Release 2.3.5

Request from browser

\ 4

Initialise modules

\4
Request
Bootstrap
\
\4
> Action < > Business logic (model)
Routing
Y \
y View script < View helpers
Dispatch
\ 4
v Response

Send response to browser

59.1.1 Starting up

To set up the application for running, a number of things happen. Firstly an instance of Zend\ ServiceManager is
created as the master locator for all class instances used by the application. The Module Manager is then used to load
all the application’s modules. It does this by reading its configuration file, application.config.php, which is
solely for use by the Module Manager and does not contain the configuration used by the application itself.

The modules are loaded in the order listed in the configuration file and for each module a number of steps takes place:
» Configuration of autoloading.
* Loading of module configuration.
* Registration of event listeners.
 Configuration of the Service Manager.

The configuration information from all modules is merged together into one configuration array. This means that con-
figuration information in subsequent modules can override information already set. Finally, the global configuration
files stored in the config/autoload directory are merged (the *.global .php and then the x.local.php
files). This means that any module’s configuration can be overridden at the application level and is a key feature that
helps to ensure that the code within a third-party module does not need to be changed.

The Service Manager and Event Manager are two other key features of a Zend Framework 2 application.
Zend\ServiceManager allows for decoupling the instantiation and configuration of a class and its dependencies from
where that class is used. This is known as Dependency Injection and is used extensively in Zend Framework 2.
Zend\EventManager is an implementation of the Observer design pattern which allows decoupling of code. In Zend
Framework 2, every key process in the dispatch cycle is implemented as an event. This means that you can write lis-
teners for these events which can then change the flow of operation or perform additional processes when something

184 Chapter 59. A quick tour of the skeleton application

Zend Framework 2 Documentation, Release 2.3.5

else has happened.

59.1.2 Dispatching

Once all modules have been loaded, the application is run. This is done as a series of events, with the first event,
route, used to determine the controller action that should be run based on the URL requested. Once this is determined,
the dispatch event is triggered which causes the action method within the controller class to be executed. The view
rendering event, render, is then triggered if an HTML view is required. Finally the finish event is triggered which
sends the response back to the user’s web browser.

While this is a typical dispatch cycle, Zend Framework 2’s dispatch system is very flexible and can be configured in
a variety of ways depending on the specific application. Now that we’ve looked at how Zend Framework works, lets
move on and write the MyTaskList application.

59.1. The dispatch cycle 185

Zend Framework 2 Documentation, Release 2.3.5

186 Chapter 59. A quick tour of the skeleton application

CHAPTER 60

The MyTaskList application

The application we are going to create is a to-do list manager. The application will allow us to create to-do items and
check them off. We’ll also need the ability to edit and delete an item. As we are building a simple application, we
need just four pages:

Page Notes

Checklist homepage | This will display the list of to-do items.

Add new item

This page will provide a form for adding a new item.

Edit item This page will provide a form for editing an item.

Delete item

This page will confirm that we want to delete an item and then delete it.

Each page of the application is known as an action, and actions are grouped into controllers within modules. Generally,
related actions are placed into a single controller; for instance, a news controller might have actions of current,
archived and view.

We will store information about our to-do items in a database. A single table will suffice with the following fields:

Field name | Type Null? | Notes

id integer No Primary key, auto-increment

title varchar(100) | No Name of the file on disk

completed tinyint No Zero if not done, one if done
created datetime No Date that the to-do item was created

We are going to use MySQL, via PHP’s PDO driver, so create a database called mytasklist using your preferred

MySQL client, and run these SQL statements to create the task_item table and some sample data:

CREATE TABLE task_item (

)i

id INT NOT NULL AUTO_INCREMENT,

title VARCHAR(100) NOT NULL,

completed TINYINT NOT NULL DEFAULT ‘07,
created DATETIME NOT NULL,

PRIMARY KEY (id)

INSERT INTO task_item (title, completed, created)

VALUES (’'Purchase conference ticket’, 0, NOW());

INSERT INTO task_item (title, completed, created)

VALUES (’Book airline ticket’, 0, NOW());

INSERT INTO task_item (title, completed, created)

VALUES (’Book hotel’, 0, NOW());

INSERT INTO task_item (title, completed, created)

VALUES (’Enjoy conference’, 0, NOW());

187

Zend Framework 2 Documentation, Release 2.3.5

Note that if you have Zend Studio, you can use the built-in Database Connectivity features. This if found in the
Database Development perspective (Window | Open Perspective | Other | Database Development menu item) and
further details are in the Zend Studio manual.

60.1 The Checklist module

We will create all our code within a module called Checklist. The Check1ist module will, therefore, contain our
controllers, models, forms and views, along with specific configuration files.

We create our new Check1ist module in Zend Studio. In the PHP Explorer on the left, right click on the MyTaskList
project folder and choose New -> Zend Framework Item. Click on Zend Module and press Next. The Source Folder
should already be set to /MyTaskList/module. Enter Checklist as the Module name and Task as the Controller
name and then press Finish:

Mew Zend Module

MNew fend Module

[
Create a new Zend Module
Source Folder MyTaskList/module | Browse |
Module name Checklist
Controller name | Task
l.f?jl [< Back | Mext > [Cancel [| Finish [

The wizard will now go ahead and create a blank module for us and register it with the Module Manager’s
application.config.php. You can see what it has done in the PHP Explorer view under the module folder:

188 Chapter 60. The MyTaskList application

http://files.zend.com/help/Zend-Studio/content/data_tools_platform.htm

Zend Framework 2 Documentation, Release 2.3.5

|- PHP Explorer 88 =8

BEg®Y

¥ (& module

22 Application
¥ [Checklist
¥ (3 config
7| module.co...
¥ [src
¥ (& Checklist
¥ 2 Controller
> [A] Tas...
¥ (B rests
¥ 2 Checklist
¥ & Frame. ..
> |A] Test...
> |F] Sample...
> |A] bootstrap....
|X| phpunit.xmi
i@l TestConfi...
¥ [HBview
¥ [checklist
¥ B task

|A] foo....
A inde...

] autoload_clas. .
> |A] autoload_fun. ..
E] autoload_regi...
LICENSE.txt
> || Module.php
&% README.md
» 2 public

As you can see the Checklist module has separate directories for the different types of files we will have. The config
folder contains configuration files, and the PHP files that contain classes within the Check1ist namespace live in
the src/Checklist directory. The view directory also has a sub- folder called checklist for our module’s
view scripts, and the test s folder contains PHPUnit test files.

60.1. The Checklist module 189

Zend Framework 2 Documentation, Release 2.3.5

60.2 The Module class

As mentioned earlier, a module’s Module class contains methods that are called during the start-up process and is
also used to register listeners that will be triggered during the dispatch process. The Module class created for us
contains three methods: getAutoloaderConfig (), getConfig() and onBootstrap () which are called
by the Module Manager during start-up.

60.2.1 Autoloading files

Our getAutoloaderConfig () method returns an array that is compatible with ZF2’s AutoloaderFactory.
It is configured for us with both a classmap file (autoload_classmap.php) and a standard autoloader to load
any files in src/Checklist according to the PSR-0 rules .

Classmap autoloading is faster, but requires adding each new class you create to the array within the au-
toload_classmap.php file, which slows down development. The standard autoloader, however, doesn’t have this re-
quirement and will always load a class if its file is named correctly. This allows us to develop quickly by creating new
classes when we need them and then gain a performance boost by using the classmap autoloader in production. Zend
Framework 2 provides bin/classmap_generator.php to create and update the file.

60.2.2 Configuration

The getConfig () methodin Checklist\Module is called by the Module Manager to retrieve the configuration
information for this module. By tradition, this method simply loads the config/module.config.php file which
is an associative array. In practice, the Module Manager requires that the returned value from getConfig () be
a Traversable, which means that you can use any configuration format that Zend\Config supports. You will
find, though, that most examples use arrays as they are easy to understand and fast.

The actual configuration information is placed in config/module.config.php. This nested array provides the
key configuration for our module. The controllers sub-array is used to register this module’s controller classes
with the Controller Service Manager which is used by the dispatcher to instantiate a controller. The one controller that
we need, TaskController, is already registered for us.

The router sub-array provides the configuration of the routes that are used by this module. A route is the way that a
URL is mapped to a to a particular action method within a controller class. Zend Studio’s default configuration is set
up so that a URL of /checklist/foo/bar maps tothe barAction () method of the FooController within
the Check1list module. We will modify this later.

Finally, the view_manager sub-array within the module.config.php file is used to register the directory
where our view files are with the View sub- system. This means that within the view/checklist sub-folder,
there is a folder for each controller. We have one controller, TaskController, so there is a single sub-folder in
view/checklist called task. Within this folder, there are separate .phtml files which contain the specific
HTML for each action of our module.

60.2.3 Registering events

The onBootstrap () method in the Module class is the easiest place to register listeners for the MVC events that
are triggered by the Event Manager. Note that the default method body provided by Zend Studio is not needed as
the ModuleRouteListener is already registered by the Application module. We do not have to register any
events for this tutorial, so go ahead and delete the entire OnBoot strap () method.

190 Chapter 60. The MyTaskList application

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

CHAPTER 61

The application’s pages

As we have four pages that all apply to tasks, we will group them in a single controller called TaskController
within our Check1ist module as four actions. Each action has a related URL which will result in that action being
dispatched. The four actions and URLs are:

Page URL Action
Homepage /task index
Add new task | /task/add add
Edit task /task/edit edit
Delete task /task/delete | delete

The mapping of a URL to a particular action is done using routes that are defined in the module’s
module.config.php file. As noted earlier, the configuration file, module.config.php created by Zend Stu-
dio has a route called check1list set up for us.

61.1 Routing

The default route provided for us isn’t quite what we need. The check1ist route is defined like this:
module/Checklist/src/config/module.config.php:

"router’ => array (
"routes’ => array (
"checklist’ => array(

"type’ => ’'Literal’,
"options’ => array(
"route’ => ' /task’,
"defaults’ => array (
' __NAMESPACE__’ => ’Checklist\Controller’,
"controller’ => "Task’,
"action’ => ’index’,
)I
)I
"may_terminate’ => true,

"child_routes’ => array (
"default’ => array (

"type’ => ’"Segment’,
"options’ => array (
"route’ => ' /[:controller[/:action]]’,

)y
),

191

21

22

Zend Framework 2 Documentation, Release 2.3.5

)y
)y

This defines a main route called check1ist, which maps the URL /task to the index action of the Task controller
and then there is a child route called default which maps /task/{controller name}/{action name}
to the {action name} action of the {controller name} controller. This means that, by default, the URL to call the add
action of the Task controller would be /task/task/add. This doesn’t look very nice and we would like to shorten
itto /task/add.

To fix this, we will rename the route from checklist to task because this route will be solely for the Task
controller. We will then redefine it to be a single Segment type route that can handle actions as well as just route to
the index action

Open module/Checklist/config/module.config.php in Zend Studio and change the entire router sec-
tion of the array to be:

module/Checklist/src/config/module.config.php:

"router’ => array (
"routes’ => array (
"task’ => array (
"type’ => ’Segment’,
"options’ => array (
"route’ => ' /task[/:action[/:1d]]",
"defaults’ => array (
’ _NAMESPACE__ "’ => ’Checklist\Controller’,
"controller’ => ’'Task’,
"action’ => ’index’,
) s
"constraints’ => array (
"action’ => '’ (add|edit |delete)’,
rid’ = ’[0-9]+",

We have now renamed the route to task and have set it up as a Segment route with two optional parameters in the
URL: action and id. We have set a default of index for the action, so that if the URL is simply /task, then
we shall use the index action in our controller.

The optional constraints section allow us to specify regular expression patterns that match the characters that we
expect for a given parameter. For this route, we have specified that the act i on parameter must be either add, edit or
delete and that the i d parameter must only contain numbers.

The routing for our Checklist module is now set up, so we can now turn our attention to the controller.

61.2 The TaskController

In Zend Framework 2, the controller is a class that is generally called {Controller name}Controller.
Note that {Controller name} starts with a capital letter. This class lives in a file called {Controller
name}Controller.php within the Controller directory for the module. In our case that’s the
module/Checklist/src/Checklist/Controller directory. Each action is a public function within the
controller class that is named {action name}Action. In this case {action name} should start with a lower
case letter.

192 Chapter 61. The application’s pages

Zend Framework 2 Documentation, Release 2.3.5

Note that this is merely a convention. Zend Framework 2’s only restrictions on a controller is that it must implement
the Zend\Stdlib\Dispatchable interface. The framework provides two abstract classes that do this for us:
Zend\Mvc\Controller\ActionController and Zend\Mvc\Controller\RestfulController.
We’ll be using the AbstractActionController, but if you're intending to write a RESTful web service,
AbstractRestfulController may be useful.

Zend Studio’s module creation wizard has already created TaskController for us with two action methods in
it: indexAction () and fooAction (). Remove the fooAction () method and the default Copyright Zend
DocBlock comment at the top of the file. Your controller should now look like this:

module/Checklist/src/Checklist/Controller/Task Controller.php:

namespace Checklist\Controller;
use Zend\Mvc\Controller\AbstractActionController;

class TaskController extends AbstractActionController

{
public function indexAction()

{

return array();

}

This controller now contains the action for the home page which will display our list of to-do items. We now need to
create a model-layer that can retrieve the tasks from the database for display.

61.3 The model

It is time to look at the model section of our application. Remember that the model is the part that deals with the
application’s core purpose (the so-called “business rules”) and, in our case, deals with the database. Zend Framework
does not provide a Zend\Model component because the model is your business logic and it’s up to you to decide
how you want it to work.

There are many components that you can use for this depending on your needs. One approach is to have model classes
represent each entity in your application and then use mapper objects that load and save entities to the database.
Another is to use an Object-relational mapping (ORM) technology, such as Doctrine or Propel. For this tutorial, we
are going to create a fairly simple model layer using an entity and a mapper that uses the Zend\Db component. In a
larger, more complex, application, you would probably also have a service class that interfaces between the controller
and the mapper.

We already have created the database table and added some sample data, so lets start by creating an entity object. An
entity object is a simple PHP object that represents a thing in the application. In our case, it represents a task to be
completed, so we will call it TaskEntity.

Create a new folder in module/Checklist/src/Checklist called Model and then right click on the new
Model folder and choose New -> PHP File. In the New PHP File dialog, set the File Name to TaskEntity.php
as shown and then press Finish.

61.3. The model 193

Zend Framework 2 Documentation, Release 2.3.5

New PHP File

New PHP file
Create a new PHP file

2]

Source Folder ',.’I'u'I:.rTaskLi5.t,anduIe.n'Checklistfsrc.n'Checinsth'u'lndEI |_ Browse _|
File Name 'TaskEntit'.f.php |
@ < Back | MNext> | | Cancel | | Finish |

This will create a blank PHP file. Update it so that it looks like this:

module/Checklist/src/Checklist/Model/Task Entity.php:

<?php
namespace Checklist\Model;

class TaskEntity

{
protected Sid;
protected Stitle;
protected Scompleted = 0;
protected Screated;

public function __ construct ()

{

Sthis->created = date(’Y-m-d H:i:s’);

public function getId()
{

return Sthis->id;

public function setId(SValue)
{

Sthis->id = $Value;

public function getTitle()
{
return Sthis->title;

}

public function setTitle ($Value)
{

Sthis->title = $Value;

194

Chapter 61. The application’s pages

36

37

38

39

40

41

42

43

44

45

46

47

48

49

20
21
22
23

24

26

Zend Framework 2 Documentation, Release 2.3.5

public function getCompleted()
{

return Sthis—->completed;

public function setCompleted($Value)

{

Sthis->completed = $Value;

public function getCreated()
{

return Sthis->created;

public function setCreated($Value)

{

Sthis—->created = $Value;

The Task entity is a simple PHP class with four properties with getter and setter methods for each property. We also
have a constructor to fill in the created property. If you are using Zend Studio rather than Eclipse PDT, then you
can generate the getter and setter methods by right clicking in the file and choosing Source -> Generate Getters and
Setters.

We now need a mapper class which is responsible for persisting task entities to the database and populating them
with new data. Again, right click on the Model folder and choose New -> PHP File and create a PHP file called
TaskMapper .php. Update it so that it looks like this:

module/Checklist/src/Checklist/Model/TaskMapper.php:

<?php
namespace Checklist\Model;

use Zend\Db\Adapter\Adapter;

use Checklist\Model\TaskEntity;

use Zend\Stdlib\Hydrator\ClassMethods;
use Zend\Db\Sqgl\Sqgl;

use Zend\Db\Sgl\Select;

use Zend\Db\ResultSet\HydratingResultSet;

class TaskMapper

{
protected StableName = ’task_item’;
protected SdbAdapter;
protected S$sgl;

public function __ construct (Adapter SdbAdapter)
{
Sthis->dbAdapter = SdbAdapter;
Sthis->sgl = new Sqgl ($SdbAdapter);
Sthis->sgl->setTable (S$Sthis->tableName) ;

public function fetchAll ()
{

Sselect = Sthis->sgl->select();

61.3. The model 195

http://files.zend.com/help/Zend-Studio-10/zend-studio.htm#creating_getters_and_setters.htm
http://files.zend.com/help/Zend-Studio-10/zend-studio.htm#creating_getters_and_setters.htm

Zend Framework 2 Documentation, Release 2.3.5

ect—>order (array (' completed ASC’, ’'created ASC’'));

Sstatement = $this->sqgl->prepareStatementForSqglObject ($Sselect);
Sresults = S$statement->execute();

sentityPrototype = new TaskEntity();

Shydrator = new ClassMethods();

Sresultset = new HydratingResultSet (Shydrator, SentityPrototype);
Sresultset—>initialize (Sresults);

return Sresultset;

}

Within this mapper class we have implemented the fetchAl1l () method and a constructor. There’s quite a lot
going on here as we’re dealing with the Zend\Db component, so let’s break it down. Firstly we have the construc-
tor which takes a Zend\Db\Adapter\Adapter parameter as we can’t do anything without a database adapter.
Zend\Db\Sql is an object that abstracts SQL statements that are compatible with the underlying database adapter
in use. We are going to use this object for all of our interaction with the database, so we create it in the constructor.

The fetchAll () method retrieves data from the database and places it into a HydratingResultSet which is
able to return populated TaskEnt ity objects when iterating. To do this, we have three distinct things happening.
Firstly we retrieve a Select object from the Sql object and use the order () method to place completed items last.
We then create a Statement object and execute it to retrieve the data from the database. The Sresults object can
be iterated over, but will return an array for each row retrieved but we want a ‘‘ TaskEntity‘‘ object. To get this, we
create a HydratingResultSet which requires a hydrator and an entity prototype to work.

The hydrator is an object that knows how to populate an entity. As there are many ways to create an entity object,
there are multiple hydrator objects provided with ZF2 and you can create your own. For our TaskEntity, we use
the ClassMethods hydrator which expects a getter and a setter method for each column in the resultset. Another
useful hydrator is ArraySerializable which will call getArrayCopy () and populate () on the entity
object when transferring data. The HydratingResultSet uses the prototype design pattern when creating the
entities when iterating. This means that instead of instantiating a new instance of the entity class on each iteration,
it clones the provided instantiated object. See http://ralphschindler.com/2012/03/09/php- constructor-best-practices-
and-the-prototype-pattern for more details.

Finally, fetchAll () returns the result set object with the correct data in it.

61.4 Using Service Manager to configure the database credentials
and inject into the controller

In order to always use the same instance of our TaskMapper, we will use the Service Manager to define how to
create the mapper and also to retrieve it when we need it. This is most easily done in the Module class where we
create a method called get ServiceConfig () which is automatically called by the Module Manager and applied
to the Service Manager. We’ll then be able to retrieve it in our controller when we need it.

To configure the Service Manager we can either supply the name of the class to be instantiated or create a factory
(closure or callback) method that instantiates the object when the Service Manager needs it. We start by implementing
getServiceConfig() and write a closure that creates a TaskMapper instance. Add this method to the Module class:

module/Checklist/Module.php:

class Module
{
public function getServiceConfig()

{

return array (

196 Chapter 61. The application’s pages

http://ralphschindler.com/2012/03/09/php

Zend Framework 2 Documentation, Release 2.3.5

"factories’ => array(

"TaskMapper’ => function (Ssm) {
SdbAdapter = $sm->get (’ Zend\Db\Adapter\Adapter’) ;
Smapper = new TaskMapper ($dbAdapter);
return Smapper;

VA

Don’t forget to add use Checklist\Model\TaskMapper; to the list of use statements at the top of the file.

The getServiceConfig () method returns an array of class creation definitions that are all merged together by
the Module Manager before passing to the Service Manager. To create a service within the Service Manager we use
a unique key name, TaskMapper. As this has to be unique, it’s common (but not a requirement) to use the fully
qualified class name as the Service Manager key name. We then define a closure that the Service Manager will call
when it is asked for an instance of TaskMapper. We can do anything we like in this closure, as long as we return an
instance of the required class. In this case, we retrieve an instance of the database adapter from the Service Manager
and then instantiate a TaskMapper object and return it. This is an example of the Dependency Injection pattern at
work as we have injected the database adapter into the mapper. This also means that Service Manager can be used as
a Dependency Injection Container in addition to a Service Locator.

As we have requested an instance of Zend\Db\Adapter\Adapter from the Service Manager, we also need
to configure the Service Manager so that it knows how to instantiate a Zend\Db\Adapter\Adapter. This is
done using a class provided by Zend Framework called Zend\Db\Adapter\AdapterServiceFactory which
we can configure within the merged configuration system. As we noted earlier, the Module Manager merges all the
configuration from each module and then merges in the files in the config/autoload directory (» .global.php
and then = . local . php files). We’ll add our database configuration information to global . php which you should
commit to your version control system.You can then use 1ocal .php (outside of the VCS) to store the credentials for
your database.

Open config/autoload/global.php and replace the empty array with:
config/autoload/global.php:

return array (
" service_manager’ => array (
"factories’ => array(
" Zend\Db\Adapter\Adapter’ =>
" Zend\Db\Adapter\AdapterServiceFactory’,
) s
)I

"db’ => array (
"driver’ => ’'Pdo’,
"dsn’ => 'mysqgl:dbname=mytasklist;hostname=localhost’,
"driver_options’ => array (

PDO: :MYSQL_ATTR_INIT_COMMAND => ’SET NAMES \’/UTF8\’’
) ’
) 4
)i

Firstly, we provide additional Service Manager configuration in the service_manager section, This array works
exactly the same as the one in getServiceConfig(), except that you should not use closures in a con-
fig file as if you do Module Manager will not be able to cache the merged configuration information. As
we already have an implementation for creating a Zend\Db\Adapter\Adapter, we use the factories
sub-array to map the key name of Zend\Db\Adapter\Adapter to the string name of the factory class
(Zend\Db\Adapter\AdapterServiceFactory‘) and the Service Manager will then use ZendDbAdapter-

61.4. Using Service Manager to configure the database credentials and inject into the controllert 97

http://www.martinfowler.com/articles/injection.html

[Y S O

[S

Zend Framework 2 Documentation, Release 2.3.5

AdapterServiceFactory to instantiate a database adapter for us.

The Zend\Db\Adapter\AdapterServiceFactory object looks for a key called db in the configuration array
and uses this to configure the database adapter. Therefore, we create the db key in our global . php file with the
relevant configuration data. The only data that is missing is the username and password required to connect to the
database. We do not want to store this in the version control system, so we store this in the 1ocal . php configuration
file, which, by default, is ignored by git.

Open config/autoload/local.php and replace the empty array with:
config/autoload/local.php:

return array (
"db’ => array(
"username’ => ’'YOUR_USERNAME’,
"password’ => ’"YOUR_PASSWORD’,
)I
)i

Obviously you should replace YOUR_USERNAME and YOUR_PASSWORD with the correct credentials.

Now that the Service Manager can create a TaskMapper instance for us, we can add a method to the controller to
retrieve it. Add get TaskMapper () tothe TaskController class:

module/Checklist/src/Checklist/Controller/Task Controller.php:

public function getTaskMapper ()

{
Ssm = Sthis->getServicelLocator();
return S$sm->get (' TaskMapper’);

}

We can now call get TaskMapper () from within our controller whenever we need to interact with our model layer.
Let’s start with a list of tasks when the index action is called.

198 Chapter 61. The application’s pages

CHAPTER 62

Listing tasks

In order to list the tasks, we need to retrieve them from the model layer and pass them to the view. To do this, we fill
in indexAction () within TaskController. Update the indexAction () like this:

module/Checklist/src/Checklist/Controller/Task Controller.php:

public function indexAction()

{
Smapper = $this->getTaskMapper () ;
return new ViewModel (array (’tasks’ => Smapper->fetchAll()));

}

You’ll also need to add use Zend\View\Model\ViewModel; to list of use statements at the top of the file.

To provide variables to the view layer, we return a ViewModel instance where the first parameter of the constructor
is an array from the action containing data we need. These are then automatically passed to the view script. The
ViewModel object also allows us to change the view script that is used, but the default is to use {controller
name}/{action name}. You can also return an array from a controller as Zend Framework will construct a
ViewModel behind the scenes for you.

We can now fill in the task/index.phtml view script. Replace the contents with this new code:

module/Checklist/view/checklist/task/index.phtml:

<?php
Stitle = "My task list’;
$this->headTitle (Stitle);

2>
<hl><?php echo S$this->escapeHtml (Stitle); 2?></hl>
<p><a href="<?php echo S$this->url (’'task’, array (

"action’=>"add’)); ?>">Add new item</p>

<table class="table">
<tr>
<th>Task</th>
<th>Created</th>
<th>Completed?</th>
<th> </th>
</tr>
<?php foreach (Stasks as Stask): ?>
<tr>
<td>
<a href="<?php echo Sthis->url(’task’,
array (’action’=>"edit’, ’id’ => Stask->getId()));?>">

199

Zend Framework 2 Documentation, Release 2.3.5

<?php echo Sthis->escapeHtml (Stask—->getTitle()); ?2?>

</td>
<td><?php echo S$this->escapeHtml (Stask->getCreated()); ?></td>
<td><?php echo Stask->getCompleted() ? ’'Yes’ : ’'No’; ?2?></td>
<td>
<a href="<?php echo Sthis->url(’task’,
array (' action’=>"delete’, ’'id’ => Stask->getId())); ?>">Delete
</td>
</tr>
<?php endforeach; ?>
</table>

The first thing we do is to set the title for the page (used in the layout) and also set the title for the <head> section
using the headTitle () view helper which will display in the browser’s title bar. We then create a link to add a new
item using the url () view helper.

The url () view helper is provided by Zend Framework and is used to create the links we need. The first parameter
tourl () is the route name that we wish to use for construction of the URL and then the second parameter is an array
of all the variables to fit into the place-holders to use. In this case we use our task route which is set up to accept two
place-holder variables: action and id.

We iterate over the $tasks that we assigned from the controller action within an HTML table. The Zend Framework
view system automatically ensures that these variables are extracted into the scope of the view script. Alternatively,
you can also prefix with $this—-> if you would like.

For each row, we display each task’s title, creation date, completion date and provide links to allow for editing and
deleting the record. A standard foreach: loop is used to iterate over the list of tasks, and we use the alternate form
using a colon and endforeach; as it is easier to scan than to try and match up braces. Again, the url () view
helper is used to create the edit and delete links.

Note that we always use the escapeHtml () view helper to help protect ourselves from XSS vulnerabilities.

If you now run the application from within Zend Studio and navigate to http://localhost:10088/MyTaskList/public/task
you should see this:

200 Chapter 62. Listing tasks

http://en.wikipedia.org/wiki/Cross-site_scripting
http://localhost:10088/MyTaskList/public/task

Zend Framework 2 Documentation, Release 2.3.5

PHP - http://localhost: 10088 /MyTaskList/public - Zend Eclipse for PHP Developers - fApplications/zend-eclipse-php/zend-eclipse-php.ap...

il FoQr | | w B e - B | &iPHP
ll: PHP Explorer &3 =0 |P] index.phteml @ http:/ flocalhost: 10088,/ MyTaskList/public &3 =8 =
| =11 @ < | http://localhost: 10088 /MyTaskList/ public/task | B =
¥ (& MyTaskList o=
> (& config Skeleton A i
[#data
¥ Emodule
b [Application
¥ 2 Checklist -
> 8 cont My task list
b #Fsrc
b (Hrests Add new item
P Hview
|| autoload_classmap.php Task Created commeted?
b |F] autoload_function.php
|| autoload_register.php .
] LICENSE.oxt Purchase conference ticket 2013-08-25 21:35:12 No Delete
P |P] Module.php
R README.md Book airline ticket 2013-08-25 21:35:12 No Delete
¥ [public
» #vendor Book hotel 2013-08-25 21:35:12 No Delete
D COMmposerjson
|Z| composer.lock Enjoy conference 2013-08-25 21:35:12 No Delete
|=| composer.phar
¥ [6] init_autoloader.php Testing! 2013-08-25 21:47:35 Yes Delete
[E] LICENSE.txt
&% README.md
P = Javascript Resources
» =i PHP Include Path [£(Problems | E] Console | 45 Remote Systems | 4% Targets | 3 Debug Output &2 =4

P =2, PHP Language Library

Gk

62.1 Redirect the home page

When you first pressed the Run button, you saw the application’s home page which is the skeleton’s welcome page. It
would be helpful if we could redirect immediately to /tasks to save us having to edit the URL each time.

To do this, go to Navigate -> Open Type... in Zend Studio and type IndexController
in the search box of the Open PHP Type dialog and press return. This will open
module/Application/src/Application/Controller/IndexController.php for you. Change
the indexAction () method so that it reads:

module/Application/src/Application/Controller/IndexController.php:

public function indexAction()

{

return Sthis->redirect () ->toRoute (’'task’);

We use the redirect controller plugin to redirect the request for the home page to the URL defined by the route
name task which we set up earlier. Now, when you press the green “Run” button, you will be taken directly to the list
of tasks.

62.1. Redirect the home page 201

Zend Framework 2 Documentation, Release 2.3.5

202 Chapter 62. Listing tasks

CHAPTER 63

Styling

We’ve picked up the skeleton application’s layout which is fine for this tutorial, but we need to change the title and
remove the copyright message.

The Zend Skeleton Application is set up to use Zend\I18n°s translation functionality for all the text. This allows
you to translate all the text strings in the application into a different language if you need to.

The translation data is stored in separate files in the gettext format which have the extension .po and are
stored in the application/language folder. The title of the application is “Skeleton Application” and to
change this, you need to use the poedit application (http://www.poedit.net/download.php/). Start poedit and open
application/language/en_US.po. Click on “Skeleton Application” in the list of original strings and then
type in “My Task List” as the translation.

en_US.po
o
Lo @ ==t
Validate Update Fuzzy Comment
Source text Translation
Skeleton Application My Task List
Home
Al rights reserved.
Welcome to %sZend Framework 2%s.
Congratulations! You have successfully installed...

Source text: Notes for translators:
Skeleton Application

Translation:
My Task List

3% translated, 31 strings (30 not translated)

Press Save in the toolbar and poedit will create an updated en_US . mo file.

Alternatively, the gted Eclipse plugin allows for editing PO files directly in Zend Studio or PDT. To install gred,
select the Help > Install New Software menu, and press the “Add..” button. Enter the gted for the Name,
http://gted.sourceforge.net/update as the Location and then press the “OK” button. You will see the gted name ap-
pear in the list. Click on the checkbox next to gted and work through the install wizard by pressing ‘“Next button as
required. At the end of the installation you will be able to create or edit the PO files using the gted plugin:

203

http://framework.zend.com/manual/2.2/en/modules/zend.i18n.translating.html
http://www.gnu.org/software/gettext/
http://www.poedit.net/download.php/
http://www.gted.org
http://gted.sourceforge.net/update

Zend Framework 2 Documentation, Release 2.3.5

C

[PHP Explorer %

(# Application
P (config
¥ (#language
ar_sY.mo
[Fl ar_SY.po
cs_CZ.mo
[Fl es_CZ.po
- de_DE.mo
[F) de_DE.po
5 en_US.mo
[F] en_US.po
- es_ES.mo
[P] es_ES.po
| fr_CAmo
[F) fr_CA.po
fr_FR.mo
[F) fr_FR.po
it_IT.mo
[F itIT.po
JjaJP.mo
[P} jaJP.po
nb_NO.mo
[F] nb_NO.po
nl_NL.mo
[nl_NL.po
pl_PL.mo
[7l pl_PL.po
pt_BR.mo
7] pt_BR.po
ru_RU.mo
[F) ru_RU.po
tr_TR.mo
[P) tr_TR.po
zh_CN.mo

B 7h CN nn

[PHP - MyTaskList/module/Application/language/es_ES.po - Zend Studio - /Users/rob/Zend /workspaces/DefaultWorkspace10

3 5 0- Q| &

It follows that as
on http://marketplace.eclipse.org/ using the same process.

W

= O|([}) esES.po X

Entries Editor
Entries

Show only fuzzy entries
fuz msgid

[skeleton Application
[Home

(] All rights reserved.

[Welcome to %sZend Fram...
[] Congratulations! You ha...

[1 Fork Zend Framework 2...
[Follow Development

[1 Zend Framework 2 is un..
[1 ZF2 Development Portal
L] Discover Modules

[] The community is worki...
L1 Explore ZF2 Modules

L1 Help ∓ Support

(] 1f you need any help or s.
[] Ping us on IRC

(] An error occurred

[] Additional information
[File

[_] Message

[] Stack trace

|_] Previous exceptions

[] No Exception available
[_] A 404 error occurred

[] The requested controller.
] The requested controller.

(] The requested controller...
(] The requested URL could...

(] We cannot determine at...

Entries | Header | Source

= [

Show only untranslated entries
msgstr

Aplicacién Esqueleto

Inicio

Todos los derechos rese...
Bienvenido al %sZend Fra..
iFelicitaciones! Haz insta...
Hacer un Fork del Zend F..
Seguir el Desarrollo

El Zend Framework 2 est..
Portal de Desarrollo del ZF2
Descubre Modulos

La comunidad esté traba..
Explora los médulos del ZF2
Ayuda & Soporte

Si necesitas alguna ayud...
Escribenos en el IRC

Ha ocurrido un error
Informacién adicional
Archivo

Mensaje

Seguimiento de la pila (s
Excepciones anteriores

No hay ninguna Excepci.
Ha ocurrido un error 404
El controlador solicitado.

El controlador solicitado.

El controlador solicitado.
€l ruteador no ha encont...
No pudimos determinar...

Details

msgld

msgstr

Fuzzy

Comments

[%% Debug |&IPHP

=0
a

EEN=N

Welcome to %sZend Framework 2%s

Bienvenido al %sZend Framework 2%s.

References [File

s NEBAREHD

Zend Studio and PDT are based on Eclipse you can install any other Eclipse plugins that are listed

The next thing to do is to remove the copyright message, we need to edit the Application module’s Layout .phtml

view script:

module/Application/view/layout/layout.phtml:

Remove this line:

<p>©

The page looks a little better now!

2005

- <?php echo date(’'Y’")

?> by Zend Technologies Ltd.

<?php echo Sthi

->translate ("All

204

Chapter 63. Styling

http://marketplace.eclipse.org/

20

21

22

23

24

25

26

27

28

29

CHAPTER 64

Adding new tasks

We can now write the functionality to add new tasks. There are two things we need to do:

* Display a form for user to provide the task information

¢ Process the form submission and store to database

We use Zend\Form to do this. The Zend\Form component manages the form and works in tandem with the
Zend\InputFilter component which will provide validation.

Create a new folder in module/Checklist/src/Checklist called Form and then within the Form folder,

create a new PHP file called TaskForm.php with these contents:

module/Checklist/src/Checklist/Form/TaskForm.php:

<?php
namespace Checklist\Form;

use Zend\Form\Form;
use Zend\Stdlib\Hydrator\ClassMethods;

class TaskForm extends Form

{

public function __ construct ($name

{

parent::_ construct ('task’);

Sthis->setAttribute ('method’,

7
Sthis->setInputFilter (new TaskFilter());
Sthis->setHydrator (new ClassMethods ())

Sthis—->add (array (
"name’ => ’'id’,
"type’ => "hidden’,

)) i

Sthis—>add (array (

=> ’'title’,

"type’ "text’,

"options’ => array(
"label’ => ’"Title’,

"name’
=>

)

"attributes’
rid’ =>
"maxlength’

=> array (
"title’,
=> 100,

= null,

&
So

"post’)

’

ptions =

array ())

205

40

41

42

43

44

45

46

47

48

49

50

52

Zend Framework 2 Documentation, Release 2.3.5

)) i

Sthis—>add (array (
"name’ => 'completed’,
"type’ => ’checkbox’,
"options’ => array(
"label’ => ’Completed?’,
"label_attributes’ => array(’class’=>’checkbox’),
) 14

Sthis—->add (array (
"name’ => ’submit’,
"attributes’ => array (
"type’ => ’submit’,
"value’ => "Go’,
"class’ => ’'btn btn-primary’,
) ’

}

Within the constructor of TaskForm, we set the name when we call the parent’s constructor and then set the method
and the input filter that we want to use. We also set the form’s hydrator to be ClassMethods, as a form object
uses hydration to transfer data to and from an entity object in exactly the same way as the Zend\Db components do.
Finally, we create the form elements for the id, title, whether the task is complete and the submit button. For each item
we set various attributes and options, including the label to be displayed.

We also need to set up validation for this form. In Zend Framework is this done using an input filter which can either
be standalone or within any class that implements InputFilterAwareInterface, such as a model entity. For
this application we are going to create a separate class for our input filter.

Create a new PHP file called TaskFilter.php in the module/Checklist/src/Checklist/Form folder
with these contents:

module/Checklist/src/Checklist/Form/TaskFilter.php:

<?php
namespace Checklist\Form;

use Zend\InputFilter\InputFilter;

class TaskFilter extends InputFilter
{
public function __construct ()
{
Sthis—>add (array (
"name’ => ’'id’,
"required’ => true,
"filters’ => array(
array ('name’ => ’"Int’),
)I
))i

Sthis—->add (array (
"name’ => ’'title’,
"required’ => true,
"filters’ => array(
array (' name’ => ’StripTags’),

206 Chapter 64. Adding new tasks

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

array (' name’ => ’'StringTrim’),

),

"validators’ => array(
array (

"name’ => ’StringlLength’,

"options’ => array (

"encoding’ => 'UTF-8’,

’

max’ => 100

Sthis—->add (array (
"name’ => 'completed’,
"required’ => false,

)) i

}

In the constructor for the TaskFilter, we create inputs for each property that we want to filter. Each input can have
a name, a required property a list of filters and a list of validators. All are optional other than the name property. The
difference between filters and validators is that a filter changes the data passed through it and a validator tests if the
data matches some specific criteria. For the title, we filter the string with St ripTags and StringTrim and finally
ensure that the string is no longer than 100 characters with the St ringLength validator. For the completed element,

we simply set required to false.

We now need to display the form and process it on submission. This is done within the TaskController's
addAction (). Open TaskController.php (Navigate -> Open Resource... is a convenient way to do this)
and add a new method called addAction () to the class that looks like this:

module/Checklist/src/Checklist/Controller/Task Controller.php:

public function addAction/()

{
Sform = new TaskForm() ;
Stask = new TaskEntity();
$form->bind(Stask);

Srequest = S$this->getRequest ();
equest—->isPost ()) {

Sform->setData ($Srequest->getPost ());
if (Sform—>isvalid()) {
Sthis—->getTaskMapper () —>saveTask ($task);

// Redirect to list of tasks

return Sthis->redirect () ->toRoute (’task’);

return array (' form’ => Sform);

}

Add use Checklist\Model\TaskEntity; and use Checklist\Form\TaskForm; to the list of use

statements at the top of the file.

Let’s look at what the addAction () does in detail.

207

Zend Framework 2 Documentation, Release 2.3.5

Sform = new TaskForm();
Stask = new TaskEntity();
Sform->bind (Stask);

We instantiate a new TaskForm object and an empty TaskEnt ity which we bind to the form for use by the form
later. The form’s bind () method attaches the model to the form. This is used in two ways:

1. When displaying the form, the initial values for each element are extracted from the model.
2. After successful validation in 1sValid (), the data from the form is put back into the model.

When adding a new task, we only need to worry about point 2, however for editing an item, we need data transfer in
both directions.

t = Sthis->getRequest ();
lest->isPost ()) {

Sform->setData (Srequest->getPost ());
if (Sform->isvValid()) {

Sreques

if

For a submitted form, we set the posted data to the form and check to see if it is valid using the isvValid () member
function of the form. The 1svValid () method uses the form’s input filter to test for validity and if it returns true, it
will then transfer the filtered data values to the entity object that is bound to the form using the registered hydrator.
This means that after isvValid () is called, Stask now contains the submitted form data.

Sthis—->getTaskMapper () —>saveTask ($task);

As the form is valid, we can save $task to the database using the mapper’s saveTask () method.

// Redirect to list of tasks
return Sthis->redirect () ->toRoute (’'task’);

After we have saved the new task, we redirect back to the list of tasks using the Redirect controller plugin.

return array ('’ form’ => Sform);

Finally, if this request is not a POST, we return the variables that we want assigned to the view. In this case, just the
form object.

We also need to add the saveTask() method to the TaskMapper class. Open
module/Checklist/src/Checklist/Model/TaskMapper.php and add this method to the end of
the class:

module/Checklist/src/Checklist/Model/TaskMapper.php:

public function saveTask (TaskEntity S$task)
{

Shydrator = new ClassMethods () ;

Sdata = $hydrator->extract (Stask);

if (Stask->getId()) {
// update action
Saction = S$this->sgl->update();
Saction->set (Sdata);
Saction->where (array (' id’ => Stask—->getId()));

} else {
// insert action
Saction = S$this->sgl->insert();

unset (Sdatal[’1d’]);
Saction—->values ($data);

statement = S$this->sqgl->prepareStatementForSglObject (Saction);

208 Chapter 64. Adding new tasks

20

21

22

23

24

25

Zend Framework 2 Documentation, Release 2.3.5

Sresult = S$statement->execute();

if (!Stask->getId()) {
Stask->setId($Sresult->getGeneratedvValue ());
}

return Sresult;

}

The saveTask () method handles both inserting a new record if $task doesn’t have an id or updating it if it
does. In either case, we need the data from the entity as an array, so we can use the hydrator to do this. If we are
updating, then we use the Sgl object’s update () method to create an Update object where we can set the data
and a where clause. For inserting, we need an Insert object to which we set the values. Obviously, when inserting,
the database will auto-increment the id, so we do not need the id property in the values list. In either case, we create
a statement object and then execute it. Finally, if we are inserting, we populate the task entity’s id with the value of
the auto-generated id.

We now need to render the form in the add.phtml view script. Create a new PHP file called add.phtml in the
module/Checklist/view/checklist/task folder and add this code:

module/Checklist/view/checklist/task/add.phtml:

<?php
Stitle = "Add new task’;
Sthis->headTitle (Stitle);

2>

<hl><?php echo S$this->escapeHtml (Stitle); 2?></hl>

<?php

Sform = S$this->form;

Sform->setAttribute (’action’, S$this->url(’task’, array(’action’ => "add’)));

Sform->get (/ submit’)->setAttribute(’value’, 'Add’);
Sform->prepare () ;

echo Sthis->form()->openTag ($form);

echo S$this->formHidden ($form->get (’1id’));

echo $this->formRow (S$Sform->get ('title’));

2>

<div>

<?php echo $this->formInput ($Sform->get (’submit’)); 2>
</div>

<?php

echo Sthis->form()->closeTag(Sform);

Again, we display a title as before and then we render the form. Zend Framework provides some view helpers to make
this a little easier. The form () view helper has an openTag () and closeTag () method which we use to open
and close the form. Then for the title element, which has a label, we can use formRow () view helper which will
render the HTML for the label, the element and any validator messages that may exist. For the id and submit elements,
we use formHidden () and formInput () respectively as we only need to render the element itself. We also want
the submit button on its own line, so we put it within a div. Note that the formRow view helper is just a convenience -
we could have used formInput (), formLabel () and formElementErrors () separately had we wanted to.

If you now run the application from within Zend Studio and click the “Add new item” link from the task list page, you
should see:

209

Zend Framework 2 Documentation, Release 2.3.5

PHP - http://localhost: 10088 /MyTaskList/public - Zend Eclipse for PHP Developers - fApplications/zend-eclipse-php/zend-eclipse-php.app

Ci- 0~
[PHPEx 32 =0

|

¥ £ MyTaskList
» (2 config
» Bdata
¥ #module
¥ (& Application
» [config
» #language
» (#src
[Eview
» (applic.
P (Herror
3 layout
P [F] lays
» [£] Module.p
¥ Checklist
¥ (& config
» [8] modul
¥ [Esrc
¥ (# Check
¥ @ Cor
L ACK
¥ (# For
rE
[ACK
¥ (Mo
rE
»[H°
P (Erests
[Eview
¥ (8 checkl
¥ Btas

B

RS NECRET

[#] add.phtm! @ http://localhost: 10088/ MyTaskList/public 52

=] QOQ’ http://localhost: 10088 /MyTaskList/public/task /add

Add new task

Title

[2 Prablems | & Console | 48 Remote Systems | 4ik Targets | L Debug Output 32

H &l
=0
)
v| B £
=
B

You can now add a new task item and see it in the list of tasks.

210

Chapter 64. Adding new tasks

20

21

22

23

24

25

26

CHAPTER 65

Editing a task

Editing a task is almost identical to adding one, so the code is very similar. This time we use editAction () in the
TaskController. Open TaskController.php and add this method to it:

module/Checklist/src/Checklist/Controller/Task Controller.php:

public function editAction()

{

$id = (int) Sthis->params(’id’);
if (!sid) |
return Sthis->redirect () ->toRoute (’task’, array(’action’=>"add’));

}
Stask = Sthis->getTaskMapper () ->getTask ($id);

Sform = new TaskForm();
Sform->bind ($task);

Srequest = $this->getRequest ();
if (Srequest->isPost()) {
Sform->setData (Srequest->getPost ());
if (Sform—>isvalid()) {
Sthis—->getTaskMapper () —>saveTask ($task);

return Sthis->redirect () —>toRoute (’task’);

return array (
rid’ => $id,
"form’ => $form,
)
}

This code should look familiar. Let’s look at the only difference from adding a task: We look for the id that is in the
matched route and use it to load the task to be edited:

Sid (int) Sthis->params ('1d’");

if (!sid) |
return Sthis->redirect () ->toRoute ('task’, array(’action’=>"add’));

Stask = Sthis->getTaskMapper () —>getTask ($id);

The params () method is a controller plugin that provides a convenient way to retrieve parameters from the
matched route. We use it to retrieve the id parameter that we defined in the task route that we created in the

211

Zend Framework 2 Documentation, Release 2.3.5

module.config.php. If the id is zero, then we redirect to the add action, otherwise, we continue by getting
the task entity from the database.

As we use the form’s bind () method with its hydrator, we do not need to populate the $task‘s data into the form
manually as it will automatically be transferred for us.

We also need to write a get Task () method in the TaskMapper to get a single record from the database, so let’s do
that now. Open TaskMapper .php and add this method:

module/Checklist/src/Checklist/Model/TaskMapper.php:

public function getTask ($id)

{

~t = S$this->sgl->select();
$select->where (array (' id’ => $id));

Sstatement = $this->sgl->prepareStatementForSglObject ($select);
Sresult = Sstatement->execute ()->current ();
if (!Sresult) {

return null;

Shydrator = new ClassMethods();
Stask = new TaskEntity();
Shydrator—->hydrate (Sresult, S$task);

return Stask;

}

This method simply sets a where clause on the Sgl‘s Select object and then executes it. Calling current () on
the result from execute () will return either the array of data for the row or false. If we retrieved data, then we
use the hydrator to populate a new TaskEntity ($task) with $data.

In the same way as with the action methods, the view template, edit . phtml, looks very similar to the one for adding
an task. Create a new PHP file called edit .phtml in in the module/Checklist/view/checklist/task
folder and add this code:

module/Checklist/view/checklist/task/edit.phtml:

<?php

Stitle = 'Edit task’;
Sthis—->headTitle (Stitle);
2>

<hl><?php echo Sthis->escapeHtml (Stitle); 2?></hl>

<?php
Sform = $this->form;
Surl = Sthis->url(’task’, array(’action’ => ’'edit’, ’id’ => $id));

Sform->setAttribute (’action’, Surl);
Sform->get (/ submit’)->setAttribute ('value’, 'Edit’);
Sform->prepare () ;

echo $this->form()->openTag (S$Sform);
echo S$this->formHidden (Sform->get ("id”));

echo $this->formRow (S$Sform->get ('title’));

echo $this->formRow (Sform->get (' completed’));

7>

<div>

<?php echo S$this->formInput (Sform->get (/submit’)); ?>
</div>

212 Chapter 65. Editing a task

Zend Framework 2 Documentation, Release 2.3.5

2 <?php
23 echo Sthis->form()->closeTag($Sform);

Compared to the add view script, we set the title to "Edit Task’, and update the action URL to the edit action with the
correct id. We also change the label of the button to ’edit” and render the completed form element.

You should now be able to edit tasks.

213

Zend Framework 2 Documentation, Release 2.3.5

214 Chapter 65. Editing a task

CHAPTER 66

Deleting a task

To round out the core functionality of our application, we need to be able to delete a task. We have a Delete link next
to each task on our list page and the nave approach would be to run the delete action when it’s clicked. This would be
wrong. Remembering the HTTP specification, we recall that you shouldn’t do an irreversible action using GET and
should use POST instead.

We shall therefore show a confirmation form when the user clicks delete and if they then click “Yes”, we will do the
deletion. As the form is trivial, we’ll code it directly into our view (Zend\Form is, after all, optional!).

Let’s start by adding the deleteAction () method to the TaskController. Open TaskController.php
and add this method to it:

module/Checklist/src/Checklist/Controller/Task Controller.php:

public function deleteAction()

$id = Sthis->params (’id’);
Stask = $this->getTaskMapper () ->getTask ($1id);
if (!Stask) {

return Sthis->redirect () ->toRoute(’task’);

est = Sthis->getRequest ();

srequest—->isPost ()) |
(Srequest->getPost () ->get ("del’) == ’'Yes’) {
Sthis—->getTaskMapper () —>deleteTask ($id);

return Sthis->redirect () ->toRoute(’task’);

}

return array (
14 idl

}

As before, we get the id from the matched route and retrieve the task object. We then check the Request object’s
isPost () to determine whether to show the confirmation page or to delete the task. We use the TaskMapper‘s
deleteTask () method to delete the row and then redirect back to the list of tasks. If the request is not a POST,
then we assign the task to the view, along with the id.

We also need to write deleteTask (), so open TaskMapper . php and add this method:
module/Checklist/src/Checklist/Model/TaskMapper.php:

215

Zend Framework 2 Documentation, Release 2.3.5

public function deleteTask (5id)

{
Sdelete = $this->sgl->delete();
Sdelete->where (array (/' id’ => $id));
$statement = S$this->sqgl->prepareStatementForSglObject (Sdelete);

return Sstatement->execute();

This code should look fairly familiar as we again use a Delete object from Zend\Db\ Sgl and execute the statement
from it. As we are using a Delete object, we set the where clause to avoid deleting every row in the table.

The view script is a simple HTML form. Create a new PHP file, delete.phtml in the
module/Checklist/view/checklist/task folder with this content:

module/Checklist/view/checklist/task/delete.phtml:

<?php

Stitle = ’Delete task’;
Sthis->headTitle(Stitle);
2>

<hl><?php echo S$this->escapeHtml (Stitle); 2?></hl>

<p>Are you sure that you want to delete the
" <?php echo Sthis->escapeHtml (Stask->getTitle()); ?>' task?

</p>

<?php

Surl = Sthis->url(’task’, array(’action’ => ’'delete’, ’'id’=>$id)); ?>
<form action="<?php echo Surl; ?>" method="post">

<div>

<input type="submit" name="del" value="Yes" />
<input type="submit" name="del" value="No" />
</div>
</form>

In this view script, we display a confirmation message and then a form with just Yes and No buttons. In the action, we
checked specifically for the “Yes” value when doing the deletion.

That’s it - you now have a fully working application!

216 Chapter 66. Deleting a task

CHAPTER 67

Application Diagnostics

One really useful feature of Zend Server is the code trace feature that can show you the method-by-method execution
of any given PHP request. This is especially useful in a Zend Framework 2 application as the use of Events and Service
Manager means that our code base isn’t necessarily linear.

Let’s consider a contrived example and introduce a delay into our codebase. One of the more common causes of slow
down is related to database calls taking too long due to a complicated query, incorrect indexing or by retrieving too
much data. We have a very simple database table with just 5 rows, so we can simulate this by adding a sleep () call
to our TaskMapper'‘s fetchAll () method.

Open Checklist/src/Checklist/Model/TaskMapper.php and add sleep (5) ; just before the end of
the fetchAll () method:

Checklist/src/Checklist/Model/TaskMapper.php:

public function fetchAll ()
{

S$select = Sthis->sgl->select ();
$Sselect—->order (array (' completed ASC’, 'created ASC’));

ment = $this->sgl->prepareStatementForSglObject ($select);

s = Sstatement->execute();

SentityPrototype = new TaskEntity();
S = new ClassMethods () ;

set = new HydratingResultSet (Shydrator, SentityPrototype);
ultset->initialize (Sresults);

sleep(5);
return Sresultset;

}

It will now take 5 seconds (and a little bit) to display the list of tasks.

If you now look at the home page of Zend Server’s console, you’ll see a “Slow Request Execution” critical event listed.
Click on the “show” link in the “Code Trace” column as shown:

217

Zend Framework 2 Documentation, Release 2.3.5

— a
8 00 / ['llocalhost:10081/zendser: x \|__| Lo/

& - C [localhost:10081/ZendServer/

Overview Applications Configurations Administration administrator 20:29
Dashboard | Events | CodeTracing | . JobQueue | . Serverinfo | . Logs W Contact Zend
Overview » Dashboard Overview System Health System Utilization Usage Statistics Mobile Usage Mobile Statistics
All Applications Time Range: 1day -
& Deploy Application Events Breakdown Requests Per Second Avg. Response Time
0.04 7.5s

Resources : 0.00%

2 Define Application

_+ performance : 28 0.03
< = >
0.02
2.5s
0.01
Errors . 71.4%
0 o 11
3. Nov 08:00 16:00 3. Nov 08:00 16:00
Shown:t Latest Critical Events
| | Count EventiD Name Last Occurred Application Summary Code Trace
| & Slow Request Execution Today, 20:26:34 Request to http: -10088/My TaskLi i took 5497ms @

Click this link to show the code trace

You will then see much more detail about this critical event. The easiest way to use the profile view is to click on the
“Statistics per Function” tab and then order by “Just own” total running time.

This will result in the display of the slowest method at the top as shown in the sceenshot.

[localhost: 10081 /ZendSer. % 3

= C' [Y localhost:10081/ZendServer/CodeTracing/details /?eventsGroupld=%206 bics 6 @ AP =
Applications Configurations Administration administrator 12:42 ‘O
" Dashboard. | Events 1 Code Tracing | Job Queue | Server Info, | Logs. B Contact Zend
Overview > Code Tracing > 0.5302.1: 1 TaskList/p
Summary
Time Today, 12:37:33 Server orion.home Application
Type Eventbased Flie Size 885.42 KB

Event Slow Request Execution

Tracing Tree | Statistics per Function

[[] Show memory usage

‘Showing 755 aul of 755 functions. Fiter by name... p

Ficton sotcet |momang o[Lomta e

T g S e

] composerautoadiClassLoader: loadClass{)

262 4588 ms 17.83ms ClassLoaderphp
[E] compossrautoioadiCiassLoader: findFila) 262 2051 me ‘147 ma |Classloaderahp
B3 fle_sxssy 520 9.10 me 9.40 me
= i) 2 4.54 me 454ms TemplaleMapResalver.pho

Calls for ChecklistiModel\TaskMapper:fatchAll()

I N T

+81,136 bytes. 5.010.52 ms 5.001:33ima 1] TeskController.php (14) object{CheckistiModelTaskMapper#231)

As you can see, Zend Server has correctly determined that fetchAll() is the cause of the slowdown and so we can
immediately go to the problem source in Zend Studio and fix the problem.

In addition to helping debugging while developing, this is obviously also extremely powerful when Zend Server is

running on the production servers as this profile information is then available for those situations when a given issue
only seems to happen on the live web site.

218 Chapter 67. Application Diagnostics

CHAPTER 68

Step-by-step debugging

Another useful feature of Zend Studio and Eclipse/PDT is the step-by-step debugger. With the debugger you can set
breakpoints in your code and then run the page in a browser. When the breakpoint is reached, Zend Studio pauses the
page and you can then inspect variables and move forward through your code one line at a time.

To see this in action, let’s inspect the value of $task in the checklist module’s index.phtml file. Open the mod-
ule/Checklist/view/checklist/task/index.phtml file and double click in the gutter next to the opening <a tag to set a
blue breakpoint marker:

16 </tr>

17 <?php foreach ($this->tasks as $task): 7>

18 <tr>

1 <td>

@20 <a href="<?php echo $this->url('task',
21 array('action'=>"edit"', 'id' => $task->getId()));?>">
<?php echo $this->escapeHtml($task->getTitle()); 7>

</td>
<td><?php echo $this->escapeHtml($task->getCreated()); 7></td>
<td><?php echo $task->getCompleted() ? 'Yes' : 'No'; ?></td>
<td>

ch hnAf T _Yuhin acha Chhie conl O Thanl

The break point is now set. The easiest way to run to this point is to use the Zend Studio Firefox tool bar. Once in-
stalled, you can navigate to http://localhost: 10088/MyTaskList/public/task in Firefox and then press the Debug button
in the toolbar. Zend Studio will then come to the foreground and ask you if you want to use the Debug perspective.
Answer yes, as this view is designed to provide useful information while debugging. Zend Studio will pause the
application on the first line of index.php, so press F8 to continue to the breakpoint that you set.

219

http://www.zend.com/en/download/155
http://localhost:10088/MyTaskList/public/task

Zend Framework 2 Documentation, Release 2.3.5

¥ Debug - MyTaskList/module/Checklist/view/checklist/task/index.phtml - Zend Studio - /Users/rob/Zend/workspaces/DefaultWorkspace10

i~ E= ﬁvov%"ﬁ ¥ v = | O 2 ol A v
%5 Debug 82 . 4ik Servers ¥ = 0O|(ed= variables £\ %

¥ @ PHP Debug [Remote PHP Launch]
v 2 PHP Application

x5

4

[y %5 Debug | & PHP

v i http://localhost: 10088/MyTaskList/public/task (suspended at line breakpoint) ame s

= /MyTaskList/module/Checklist/view/checklist/task/index.phtml at line 20 > & Stasks

= render(): /MyTaskList/vendor/ZF2/library/Zend/View/Renderer/PhpRenderer.php at line 50; @ stitle

= render(): /MyTaskList/vendor/ZF2/library/Zend/View/View.php at line 205 Vv @ Stask

= renderChildren(: /MyTaskList/vendor/ZF2/library/Zend/View/View.php at line 233 @ *id

= render(): /MyTaskList/vendor/ZF2/library/Zend/View/View.php at line 198 @ rutitle
render(: /MyTaskList/vendor/ZF2/library/Zend/Mvc/View/Http/D . (B
triggerListeners(): /MyTaskList/vendor/ZF2/library/Zend/EventManager/EventManager.php i @ *icreated

completeRequest(: /MyTaskList/vendor/ZF2/library/Zend/Mvc/Application.php at line 347
= run(: /MyTaskList/vendor/ZF2/library/Zend/Mvc/Application.php at line 322
= /MyTaskList/public/index.php at line 12

@ Welcome [#] index.php [£] IndexController.php [£] index.phtml 5%

10= <table class="table">

11 <tr>

12 <th>Task</th>

13 <th>Created</th>

1 <th>Completed?</th>

1 <th> </th>

16 </tr>

17 <?php foreach ($this->tasks as $task): 7>

18 <tr>

1 <td>

20 <a href="<?php echo $this->url('task’,
21 array('action'=>'edit', 'id' => $task->getId()));?>">
<?php echo $this->escapeHtml($task->getTitle()); 7>

</td>

<td><?php echo $this->escapeHtml($task->getCreated()); ?></td>
<td><?php echo $task->getCompleted() ? 'Yes' : 'No'; ?></td>
<td>
<a href="<?php echo $this->url('task’,
array('action'=>"delete’, 'id' => $task->getId()));?>">Delete
</td>

] Console 33 ¥ Tasks | 3 Debug Output | L& Browser Output
PHP Debug [Remote PHP Launch] http://localhost:10088/MyTaskList/public/task

2] ive Cons

[#] parameter Stack| = O
e

Value

Object of: Zend\\Db\\ResultSet\\HydratingResultSet
(string:12) My task list

Object of: Checklist\\Model\\TaskEntity

(string:1) 1

(string:26) Purchase conference ticket

(string:1) 0

(string:19) 2013-08-25 21:35:12

trigger(): /MyTaskList/vendor/ZF2/library/Zend/EventManager/EventManager.php at line 20| Object of: Checklist\Model\TaskEntity

= 3)(5= outline % o &g~ =8
“= use statements
o Stitle
© Stask
= % G EE[t E-r3-= O

You will now see the code we are interested in. The centre pane shows our code with the line that the debugger is
stopped on highlighted. The top left pane shows the stack trace which tells us which methods were used to get to this
line of code. The top right pane shows a list of variables in scope. You can click the arrow next to $task to expand
it and see the properties of the object. Pressing F8 will resume running the application until the next breakpoint. As
our breakpoint is in a loop, it iterates once around the loop and stops again. The data in $task is now the second
database record. Once you have finished inspecting the state of your code, you can press the square red stop button to
stop the debugging mode. Clicking the PHP button in the top right hand corner of Zend Studio takes you back to the

code editing view.

220

Chapter 68. Step-by-step debugging

CHAPTER 69

Conclusion

This concludes our brief look at building a simple, but fully functional, Zend Framework 2 application using Zend
Studio 10 with the code running on Zend Server 6. It barely scratches the surface of the power and flexibility of Zend
Framework and we recommend reading the manual for more information. Similarly, the combination of Zend Studio
and Zend Server makes for a very powerful system for writing, debugging and deploying PHP applications. The Zend
Studio manual is very helpful for getting the most out of this tool.

221

http://framework.zend.com/manual
http://files.zend.com/help/Zend-Studio-10/zend-studio.htm
http://files.zend.com/help/Zend-Studio-10/zend-studio.htm

Zend Framework 2 Documentation, Release 2.3.5

222 Chapter 69. Conclusion

CHAPTER 70

Zend Framework Tool (ZFTool)

ZFTool is a utility module for maintaining modular Zend Framework 2 applications. It runs from the command line
and can be installed as ZF2 module or as PHAR (see below). This tool gives you the ability to:

* create a ZF2 project, installing a skeleton application;

e create a new module inside an existing ZF2 application;

* get the list of all the modules installed inside an application;
* get the configuration file of a ZF2 application;

* install the ZF2 library choosing a specific version.

To install the ZFTool you can use one of the following methods or you can just download the PHAR package and use
it.

70.1 Installation using Composer

1. Open console (command prompt)
2. Go to your application’s directory
3. Run php composer.phar require zendframework/zftool:dev-master

zf-.php (Zend Tool) will be installed in the vendor/bin folder. You may run it with php vendor/bin/zf.php.

70.2 Manual installation

1. Clone using git or download zipball
2. Extract to vendor/ZFTool in your ZF2 application

3. Enter the vendor/ZFTool folder and execute zf.php as reported below.

70.3 Without installation, using the PHAR file

1. You don’t need to install ZFTool if you want just use it as a shell command. You can download zftool.phar and
use it.

223

https://github.com/zendframework/ZFTool
https://github.com/zendframework/ZFTool/zipball/master
https://packages.zendframework.com/zftool.phar

Zend Framework 2 Documentation, Release 2.3.5

70.4 Usage

70.4.1 From Composer or Manual install:
The zf.php should be installed into the vendor/ZFTool directory (relative to your project root) - however, the command

needs to be run from your project root in order for it to work correctly. You can symlink vendor/ZFTool/zf.php to your
project root, or alternatively substitute zf.php for vendor/ZFTool/7f.php in the examples below.

70.4.2 Using the PHAR:

Simply substitute zftool.phar for zf.php in the below examples.

70.4.3 Basic information

> zf.php modules [list] show loaded modules

The modules option gives you the list of all the modules installed in a ZF2 application.
> zf.php version | —--version display current Zend Framework version
The version option gives you the version number of ZFTool and, if executed from the root folder of a ZF2 application,

the version number of the Zend Framework library used by the application.

70.4.4 Project creation

> zf.php create project <path>
<path> The path of the project to be created

This command installs the ZendSkeletonApplication in the specified path.

70.4.5 Module creation

> zf.php create module <name> [<path>]

<name> The name of the module to be created
<path> The path to the root folder of the ZF2 application (optional)

This command can be used to create a new module inside an existing ZF2 application. If the path is not provided the
ZFTool try to create a new module in the local directory (only if the local folder contains a ZF2 application).

70.4.6 Classmap generator

> zf.php classmap generate <directory> <classmap file> [--append|-a] [--overwrite|-w]

<directory> The directory to scan for PHP classes (use "." to use current directory)

<classmap file> File name for generated class map file or - for standard output. If not suppliec
autoload_classmap.php inside <directory>.

—-—append | -a Append to classmap file if it exists

--overwrite | -w Whether or not to overwrite existing classmap file

224 Chapter 70. Zend Framework Tool (ZFTool)

https://github.com/zendframework/ZendSkeletonApplication

Zend Framework 2 Documentation, Release 2.3.5

70.4.7 ZF library installation

> zf.php install zf <path> [<version>]

<path> The directory where to install the ZF2 library
<version> The version to install, if not specified uses the last available

This command install the specified version of the ZF2 library in a path. If the version is omitted it will be used the
last stable available. Using this command you can install all the tag version specified in the ZF2 github repository
(the name used for the version is obtained removing the ‘release-‘ string from the tag name; for instance, the tag
‘release-2.0.0’ is equivalent to the version number 2.0.0).

70.4.8 Compile the PHAR file

You can create a .phar file containing the ZFTool project. In order to compile ZFTool in a .phar file you need to execute
the following command:

> bin/create-phar

This command will create a zftool.phar file in the bin folder. You can use and ship only this file to execute all the

ZFTool functionalities. After the zftool.phar creation, we suggest to add the folder bin of ZFTool in your PATH
environment. In this way you can execute the zffool. phar script wherever you are.

70.4. Usage 225

https://github.com/zendframework/zf2

Zend Framework 2 Documentation, Release 2.3.5

226 Chapter 70. Zend Framework Tool (ZFTool)

CHAPTER 71

Learning Dependency Injection

71.1 Very brief introduction to Di.

Dependency Injection is a concept that has been talked about in numerous places over the web. For the purposes of
this quickstart, we’ll explain the act of injecting dependencies simply with this below code:

Sb = new B(new A());

Above, A is a dependency of B, and A was injected into B. If you are not familiar with the concept of dependency
injection, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy, Ralph Schindler’s Learning DI, or
Fabien Potencier’s Series on DI.

71.2 Simplest usage case (2 classes, one consumes the other)

In the simplest use case, a developer might have one class (2) that is consumed by another class (B) through the
constructor. By having the dependency injected through the constructor, this requires an object of type A be instantiated
before an object of type B so that A can be injected into B.

namespace My {

class A

{

/% Some useful functionality =/

}

class B

{
protected Sa = null;
public function __ _construct (A $a)

{

Sthis->a = Sa;

}
}
To create B by hand, a developer would follow this work flow, or a similar workflow to this:
Shb = new B(new A());

If this workflow becomes repeated throughout your application multiple times, this creates an opportunity where one
might want to DRY up the code. While there are several ways to do this, using a dependency injection container is one

227

http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://fabien.potencier.org/article/11/what-is-dependency-injection
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

of these solutions. With Zend’s dependency injection container Zend\D1\D1, the above use case can be taken care
of with no configuration (provided all of your autoloading is already configured properly) with the following usage:

$di = new Zend\Di\Di;
Sb = $di->get ('My\B’); // will produce a B object that is consuming an A object

Moreover, by using the Di: : get () method, you are ensuring that the same exact object is returned on subsequent
calls. To force new objects to be created on each and every request, one would use the Di: :newInstance ()
method:

$b = $di->newlInstance ('My\B’);

Let’s assume for a moment that A requires some configuration before it can be created. Our previous use case is
expanded to this (we’ll throw a 3rd class in for good measure):

namespace My {

class A
{
protected Susername = null;
protected S$password = null;
public function __ construct (Susername, S$password)

{
Sthis->username =
Sthis->password = $

class B

{

protected $a = null;
public function ___construct (A Sa)

{

Sthis->a = Sa;

class C

{
protected Sb = null;
public function ___construct (B $b)

{

Sthis->b = S$b;

With the above, we need to ensure that our D1 is capable of setting the A class with a few configuration values (which
are generally scalar in nature). To do this, we need to interact with the InstanceManager:

$di = new Zend\Di\Dij;
Sdi->getInstanceManager () ->setProperty ('A’, ’'username’, ’'MyUsernameValue’);
Sdi->getInstanceManager () —>setProperty ('A’, ’'password’, ’'MyHardToGuessPassword%S#');

Now that our container has values it can use when creating A, and our new goal is to have a C object that consumes B
and in turn consumes A, the usage scenario is still the same:

228 Chapter 71. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.3.5

Sc = sdi->get ('My\C’);
// or
$Sc = $di->newInstance ('My\C’);

Simple enough, but what if we wanted to pass in these parameters at call time? Assuming a default Di object ($di =
new Zend\Di\Di () without any configuration to the InstanceManager), we could do the following:

Sparameters = array (
"username’ => "MyUsernameValue’,
"password’ => ’"MyHardToGuessPassword$$#’,

)

Sc = $di->get ('My\C’, Sparameters);
// or

$c = $di->newlInstance ('My\C’, S$parameters);

Constructor injection is not the only supported type of injection. The other most popular method of injection is also
supported: setter injection. Setter injection allows one to have a usage scenario that is the same as our previous
example with the exception, for example, of our B class now looking like this:

namespace My {
class B
{
protected 5a;
public function setA (A Sa)
{

$this->a = $Sa;

}

Since the method is prefixed with set, and is followed by a capital letter, the Di knows that this method is used for
setter injection, and again, the use case $c¢ = $di->get (’ C’), will once again know how to fill the dependencies
when needed to create an object of type C.

Other methods are being created to determine what the wirings between classes are, such as interface injection and
annotation based injection.

71.3 Simplest Usage Case Without Type-hints

If your code does not have type-hints or you are using 3rd party code that does not have type-hints but does practice
dependency injection, you can still use the D1, but you might find you need to describe your dependencies explicitly.
To do this, you will need to interact with one of the definitions that is capable of letting a developer describe, with
objects, the map between classes. This particular definition is called the BuilderDefinition and can work with,
or in place of, the default Runt imeDefinition.

Definitions are a part of the Di that attempt to describe the relationship between classes so that
Di::newlInstance () andDi: :get () can know what the dependencies are that need to be filled for a particular
class/object. With no configuration, Di will use the Runt imeDefinition which uses reflection and the type-hints
in your code to determine the dependency map. Without type-hints, it will assume that all dependencies are scalar or
required configuration parameters.

The BuilderDefinition, which can be used in tandem with the Runt imeDefinition (technically, it can
be used in tandem with any definition by way of the AggregateDefinition), allows you to programmatically
describe the mappings with objects. Let’s say for example, our above A/B/C usage scenario, were altered such that
class B now looks like this:

71.3. Simplest Usage Case Without Type-hints 229

22

23

24

25

26

27

28

29

30

31

Zend Framework 2 Documentation, Release 2.3.5

namespace My {
class B
{
protected 5$a;
public function setA($a)
{

Sthis->a = $Sa;

}

You’ll notice the only change is that setA now does not include any type-hinting information.

use Zend\Di\Di;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

// Describe this class:
Sbuilder = new Definition\BuilderDefinition;
Shbuilder->addClass ((Sclass = new Builder\PhpClass));

Sclass—->setName (' My\B’) ;
Sclass->addInjectableMethod (($im = new Builder\InjectableMethod));

$im->setName (/ setA’);
$im->addParameter (’a’, ’'My\A’);

// Use both our Builder Definition as well as the default
// RuntimeDefinition, builder first

SaDef = new Definition\AggregateDefinition;
aDef->addDefinition (Sbuilder);

SaDef->addDefinition (new Definition\RuntimeDefinition);

Sé

// Now make sure the Di understands it
$Sdi = new Dij;
Sdi->setDefinition (SaDef);

// and finally, create C

Sparameters = array (
"username’ => "MyUsernameValue’,
"password’ => ’'MyHardToGuessPassword%S#’,

)i
$c = $di->get ('My\C’, Sparameters);

This above usage scenario provides that whatever the code looks like, you can ensure that it works with the dependency
injection container. In an ideal world, all of your code would have the proper type hinting and/or would be using a
mapping strategy that reduces the amount of bootstrapping work that needs to be done in order to have a full definition
that is capable of instantiating all of the objects you might require.

71.4 Simplest usage case with Compiled Definition

Without going into the gritty details, as you might expect, PHP at its core is not DI friendly. Out-of-the-box, the D1
uses a RuntimeDefinition which does all class map resolution via PHP’s Reflect ion extension. Couple that
with the fact that PHP does not have a true application layer capable of storing objects in-memory between requests,
and you get a recipe that is less performant than similar solutions you’ll find in Java and .Net (where there is an

230 Chapter 71. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.3.5

application layer with in-memory object storage.)

To mitigate this shortcoming, Zend\D1i has several features built in capable of pre-compiling the most expensive
tasks that surround dependency injection. It is worth noting that the RuntimeDefinition, which is used by
default, is the only definition that does lookups on-demand. The rest of the Definition objects are capable of
being aggregated and stored to disk in a very performant way.

Ideally, 3rd party code will ship with a pre-compiled Definition that will describe the various relationships and
parameter/property needs of each class that is to be instantiated. This Definition would have been built as part of
some deployment or packaging task by this 3rd party. When this is not the case, you can create these Definitions
via any of the Definition types provided with the exception of the Runt imeDefinition. Here is a breakdown
of the job of each definition type:

* AggregateDefinition- Aggregates multiple definitions of various types. When looking for a class, it
looks it up in the order the definitions were provided to this aggregate.

e ArrayDefinition- This definition takes an array of information and exposes it via the interface provided
by Zend\Di\Definition suitable for usage by Di or an AggregateDefinition

* BuilderDefinition- Creates a definition based on an object graph consisting of various
Builder\PhpClass objects and Builder\InjectionMethod objects that describe the mapping needs
of the target codebase and

e Compiler- This is not actually a definition, but produces an ArrayDefinition based off of a code scanner
(zend\Code\Scanner\DirectoryScanner or Zend\Code\Scanner\FileScanner).

The following is an example of producing a definition viaa DirectoryScanner:

compiler = new Zend\Di\Definition\Compiler ();
Scompiler->addCodeScannerDirectory (

new Zend\Code\Scanner\ScannerDirectory ('path/to/library/My/")
)i

Sdefinition = $compiler->compile();
This definition can then be directly used by the Di (assuming the above A, B, C scenario was actually a file per
class on disk):

Sdi = new Zend\Di\Di;
Sdi->setDefinition(Sdefinition);

di->getInstanceManager () —>setProperty ('My\A’, ’‘username’, ’'foo’);
Sdi->getInstanceManager () ->setProperty ('My\A’, ’'password’, ’'bar’);
Sc = Sdi->get ("My\C’);

One strategy for persisting these compiled definitions would be the following:

if (!file_exists(__DIR__ . ’/di-definition.php’) && $isProduction) {
Scompiler = new Zend\Di\Definition\Compiler ();
S piler—>addCodeScannerDirectory (

new Zend\Code\Scanner\ScannerDirectory (’'path/to/library/My/”")

M

)i

Sdefinition = $compiler->compile();
file_put_contents (
__DIR__ . '"/di-definition.php’,
" <?php return ’ . var_export ($definition->toArray(), true) . ’;’
)
} else {
Sdefinition = new Zend\Di\Definition\ArrayDefinition (
include _ DIR__ . ’/di-definition.php’

)i

71.4. Simplest usage case with Compiled Definition 231

Zend Framework 2 Documentation, Release 2.3.5

// Sdefinition can now be used; in a production system it will be written
// to disk.

Since Zzend\Code\Scanner does not include files, the classes contained within are not loaded into memory. In-
stead, Zend\Code\ Scanner uses tokenization to determine the structure of your files. This makes this suitable to
use this solution during development and within the same request as any one of your application’s dispatched actions.

71.5 Creating a precompiled definition for others to use

If you are a 3rd party code developer, it makes sense to produce a Definition file that describes your code so that
others can utilize this Definition without having to Reflect it via the RuntimeDefinition, or create it via
the Compiler. To do this, use the same technique as above. Instead of writing the resulting array to disk, you would
write the information into a definition directly, by way of Zend\Code\Generator:

// First, compile the information
Scompiler = new Zend\Di\Definition\CompilerDefinition();
Scompiler->addDirectoryScanner (

new Zend\Code\Scanner\DirectoryScanner (__DIR __ . ' /My/’")
)i
Scompiler->compile () ;
Sdefinition = Scompiler->toArrayDefinition();

// Now, create a Definition class for this information
ScodeGenerator = new Zend\Code\Generator\FileGenerator () ;
ScodeGenerator->setClass ((Sclass = new Zend\Code\Generator\ClassGenerator()));
Sclass->setNamespaceName ('My’) ;
Sclass—->setName ('DiDefinition’);
Sclass->setExtendedClass (' \Zend\Di\Definition\ArrayDefinition’);
Sclass—>addMethod (

' __construct’,

array (),
\Zend\Code\Generator\MethodGenerator: : FLAG_PUBLIC,
"parent::___construct (’ . var_export ($definition->toArray (), true) . 7);’
)i
file_put_contents(__DIR __ . ’/My/DiDefinition.php’, ScodeGenerator—->generate());

71.6 Using Multiple Definitions From Multiple Sources

In all actuality, you will be using code from multiple places, some Zend Framework code, some other 3rd party code,
and of course, your own code that makes up your application. Here is a method for consuming definitions from
multiple places:

use Zend\Di\Di;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

$Sdi = new Dij;
SdibefAggregate = new Definition\Aggregate();

// first add in provided Definitions, for example
SdiDefAggregate->addDefinition (new ThirdParty\Dbal\DiDefinition());
SdibefAggregate—>addDefinition (new Zend\Controller\DiDefinition());

232 Chapter 71. Learning Dependency Injection

20

21

22

23

24

25

26

27

28

29

39

40

41

)

43

44

Zend Framework 2 Documentation, Release 2.3.5

// for code that does not have TypeHints
Sbuilder = new Definition\BuilderDefinition();
Shbuilder->addClass ((Sclass = Builder\PhpClass));
Sclass—->addInjectionMethod (

($injectMethod = new Builder\InjectionMethod())
)i
SinjectMethod->setName (' injectImplementation’);
$injectMethod->addParameter (
"implementation’, ’Class\For\Specific\Implementation’

)i

// now, your application code
Scompiler = new Definition\Compiler ()
Scompiler->addCodeScannerDirectory (

new Zend\Code\Scanner\DirectoryScanner (__DIR__ . ' /App/’)
)i
SappDefinition = S$compiler—->compile();
SdiDefAggregate->addDefinition ($appbDefinition);

// now, pass in properties
$im = S$di->getInstanceManager () ;

// this could come from Zend\Config\Config::toArray
SpropertiesFromConfig = array(
"ThirdParty\Dbal\DbAdapter’ => array (
"username’ => ’'someUsername’,
"password’ => ’somePassword’
)I
"Zend\Controller\Helper\ContentType’ => array (
"default’ => ’"xhtml5’
)I
)i

Sim->setProperties (SpropertiesFromConfiqg);

71.7 Generating Service Locators

In production, you want things to be as fast as possible. The Dependency Injection Container, while engineered for
speed, still must do a fair bit of work resolving parameters and dependencies at runtime. What if you could speed
things up and remove those lookups?

The Zend\Di\ServiceLocator\Generator component can do just that. It takes a configured DI instance,
and generates a service locator class for you from it. That class will manage instances for you, as well as provide
hard-coded, lazy-loading instantiation of instances.

The method getCodeGenerator () returns an instance of Zend\CodeGenerator\Php\PhpFile, from
which you can then write a class file with the new Service Locator. Methods on the Generator class allow you
to specify the namespace and class for the generated Service Locator.

As an example, consider the following:

use Zend\Di\ServiceLocator\Generator;

// 8di is a fully configured DI instance
Sgenerator = new Generator (5di);

Sgenerator->setNamespace (' Application’)

71.7. Generating Service Locators 233

Zend Framework 2 Documentation, Release 2.3.5

->setContainerClass (' Context’);
S$file = $Sgenerator->getCodeGenerator();
Sfile->setFilename (__DIR__ . ’/../Application/Context.php’);
Sfile->write();

The above code will write to ../Application/Context.php, and that file will contain the class
Application\Context. That file might look like the following:

<?php
namespace Application;
use Zend\Di\Servicelocator;

class Context extends ServiceLocator

{

public function get ($Sname, array Sparams = array())
{
switch (Sname) ({
case ’'composed’ :
case ’'My\ComposedClass’ :
return S$this->getMyComposedClass();

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

case ’'My\Struct’:
return S$this->getMyStruct () ;

return parent::get (Sname,

public function getComposedClass ()
if (isset ($this->services[’My\ComposedClass’]))

return Sthis->services[’My\ComposedClass’];

new \My\ComposedClass () ;

Sthis->services[’My\ComposedClass’] = S$Sobject;

return Sobject;
public function getMyStruct ()
if (isset (Sthis->services[’My\Struct’]))

return Sthis->services[’My\Struct’];

new \My\Struct ();
Sthis->services[’My\Struct’]
return Sobject;

public function getComposed()

return Sthis->get (' My\ComposedClass’);

Chapter 71. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.3.5

52 public function getStruct ()

53 {

54 return S$this->get ('My\Struct’);
55 }

56 }

To use this class, you simply consume it as you would a DI container:
I Scontainer = new Application\Context;
3 S$struct = S$Scontainer->get (’struct’); // My\Struct instance

One note about this functionality in its current incarnation. Configuration is per-environment only at this time. This
means that you will need to generate a container per execution environment. Our recommendation is that you do so,
and then in your environment, specify the container class to use.

71.7. Generating Service Locators 235

Zend Framework 2 Documentation, Release 2.3.5

236 Chapter 71. Learning Dependency Injection

CHAPTER 72

Unit Testing a Zend Framework 2 application

A solid unit test suite is essential for ongoing development in large projects, especially those with many people in-
volved. Going back and manually testing every individual component of an application after every change is imprac-
tical. Your unit tests will help alleviate that by automatically testing your application’s components and alerting you
when something is not working the same way it was when you wrote your tests.

This tutorial is written in the hopes of showing how to test different parts of a Zend Framework 2 MVC application.
As such, this tutorial will use the application written in the getting started user guide. It is in no way a guide to unit
testing in general, but is here only to help overcome the initial hurdles in writing unit tests for ZF2 applications.

It is recommended to have at least a basic understanding of unit tests, assertions and mocks.

As the Zend Framework 2 API uses PHPUnit, so will this tutorial. This tutorial assumes that you already have PHPUnit
installed. The version of PHPUnit used should be 3.7.*

72.1 Setting up phpunit to use composer’s autoload.php

If you used composer to generate an autoload.php file for you, as seen in the note on using composer to au-
toload module files, then you need to use a phpunit binary installed by composer. You can add this as a development
dependency using composer itself:

S php composer.phar require --dev phpunit/phpunit

The above command will update your composer. json file and perform an update for you, which will also setup
autoloading rules.

72.2 Setting up the tests directory

As Zend Framework 2 applications are built from modules that should be standalone blocks of an application, we
don’t test the application in it’s entirety, but module by module.

We will show how to set up the minimum requirements to test a module, the A1bum module we wrote in the user
guide, and which then can be used as a base for testing any other module.

Start by creating a directory called test in zf2-tutorial\module\Album with the following subdirectories:

zf2-tutorial/
/module
/Album
/test

237

http://phpunit.de/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Zend Framework 2 Documentation, Release 2.3.5

/AlbumTest

/Controller

The structure of the test directory matches exactly with that of the module’s source files, and it will allow you to
keep your tests well-organized and easy to find.

72.3 Bootstrapping your tests

Next, create a file called phpunit .xml under zf2-tutorial/module/Album/test:

<?xml version="1.0" encoding="UTF-8"?>

<phpunit bootstrap="Bootstrap.php" colors="true">
<testsuites>

<testsuite name="zf2tutorial">

<directory>./AlbumTest</directory>

</testsuite>

</testsuites>
</phpunit>

And a file called Bootstrap.php, also under zf2-tutorial/module/Album/test:

<?php

namespace AlbumTest;

use
use
use
use

error_reporting (E_ALL

Zend\Loader\AutoloaderFactory;
Zend\Mvc\Service\ServiceManagerConfig;
Zend\ServiceManager\ServiceManager;
RuntimeException;

chdir (__DIR_);

VS

* Test bootstrap,

*/

class Bootstrap

{

E_STRICT) ;

for setting up autoloading

protected static SserviceManager;

public static function init ()

{

Szf2ModulePaths = array(dirname (dirname (__DIR__)));

if ((Spath = statiec::findParentPath (’vendor’))) {
Szf2ModulePaths[] = $path;

}

if ((Spath = static::findParentPath ('module’)) !== $zf2ModulePaths[0]) {
Szf2ModulePaths[] = $path;

static::initAutoloader();

// use ModuleManager to load this module and it’s dependencies

Sconfig = array(

"module_listener_options’ => array(

"module_paths’

=> S$zf2ModulePaths,

238

Chapter 72. Unit Testing a Zend Framework 2 application

36

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Zend Framework 2 Documentation, Release 2.3.5

)
"modules’ => array (
"Album’

)

SserviceManager = new ServiceManager (new ServiceManagerConfig());
SserviceManager->setService (' ApplicationConfig’, Sconfig);
SserviceManager->get (' ModuleManager’)->loadModules () ;
static::$serviceManager = $serviceManager;

public static function chroot ()

{
SrootPath = dirname (static::findParentPath ('module’));
chdir (SrootPath);

public static function getServiceManager ()

{

return static::S$serviceManager;

protected static function initAutoloader ()

{
SvendorPath = static::findParentPath (’vendor’);

Szf2Path = getenv ('’ ZF2_PATH');
if (!Szf2Path) |
if (defined(’ZF2_PATH")) {
Szf2Path = ZF2_PATH;
} elseif (is_dir($vendorPath . ' /ZF2/library’)) {
$zf2Path = S$vendorPath . ’/ZF2/library’;

} elseif (is_dir($vendorPath . ’/zendframework/zendframework/library’))
$zf2Path = SvendorPath . ’/zendframework/zendframework/library’;

if (!Szf2Path) {
throw new RuntimeException (
"Unable to load ZF2. Run ‘php composer.phar install‘ or’
" define a ZF2_PATH environment variable.’

)i

if (file_exists(SvendorPath . ’/autoload.php’)) {
include S$vendorPath . ’/autoload.php’;

include $zf2Path . ’/Zend/Loader/AutoloaderFactory.php’;
AutoloaderFactory::factory (array (
" Zzend\Loader\StandardAutoloader’ => array (

"autoregister_zf’ => true,
"namespaces’ => array (
_ NAMESPACE__ => _ DIR__ . '/’ . _ NAMESPACE__,

{

72.3. Bootstrapping your tests

239

Zend Framework 2 Documentation, Release 2.3.5

94 }

95

96 protected static function findParentPath (Spath)
97 {

98 Sdir = _ DIR__;

9 SpreviousDir = '.’;

100 while (!is_dir($dir . 7/’ . Spath)) {
101 Sdir = dirname (Sdir);

102 if (SpreviousDir === $dir) {

103 return false;

104 }

105 SpreviousDir = $dir;

106 }

107 return S$dir . 7/’ . Spath;

108 }

109 }

110

11 Bootstrap::init ();
12 Bootstrap::chroot ();

The contents of this bootstrap file can be daunting at first sight, but all it really does is ensuring that all the necessary
files are autoloadable for our tests. The most important lines is line 38 on which we say what modules we want to load
for our test. In this case we are only loading the A1bum module as it has no dependencies against other modules.

Now, if you navigate to the zf2-tutorial/module/Album/test/ directory, and run phpunit, you should
get a similar output to this:

PHPUnit 3.7.13 by Sebastian Bergmann.
Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml
Time: 0 seconds, Memory: 1.75Mb

No tests executed!

Even though no tests were executed, we at least know that the autoloader found the ZF2 files, otherwise it would throw
aRuntimeException, defined on line 69 of our bootstrap file.

72.4 Your first controller test

Testing controllers is never an easy task, but Zend Framework 2 comes with the Zend\ Te st component which should
make testing much less cumbersome.

First, create AlbumControllerTest .phpunder zf2-tutorial/module/Album/test/AlbumTest/Controller
with the following contents:

1 <?php

3 namespace AlbumTest\Controller;

s use Zend\Test\PHPUnit\Controller\AbstractHttpControllerTestCase;

7 class AlbumControllerTest extends AbstractHttpControllerTestCase
s |
9 public function setUp()

10 {
1 Sthis->setApplicationConfig(

240 Chapter 72. Unit Testing a Zend Framework 2 application

Zend Framework 2 Documentation, Release 2.3.5

include ' /var/www/zf2-tutorial/config/application.config.php’
)i
parent: :setUp();

}

The AbstractHttpControllerTestCase class we extend here helps us setting up the application itself, helps
with dispatching and other tasks that happen during a request, as well offers methods for asserting request params,
response headers, redirects and more. See Zend\Test documentation for more.

One thing that is needed is to set the application config with the setApplicationConfig method.
Now, add the following function to the AlbumControllerTest class:

public function testIndexActionCanBeAccessed ()
{
Sthis->dispatch ('’ /album’);
Sthis->assertResponseStatusCode (200) ;

Sthis->assertModuleName (' Album’) ;
Sthis—->assertControllerName (' Album\Controller\Album’) ;
Sthis->assertControllerClass ('AlbumController’);
Sthis—->assertMatchedRouteName (' album’) ;

}

This test case dispatches the /album URL, asserts that the response code is 200, and that we ended up in the desired
module and controller.

Note: For asserting the controller name we are using the controller name we defined in our routing configuration for
the Album module. In our example this should be defined on line 19 of the module.config.php file in the Album

module.

72.5 A failing test case

Finally, cdto zf2-tutorial/module/Album/test/ and run phpunit. Uh-oh! The test failed!

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml
F

Time: 0 seconds, Memory: 8.50Mb

There was 1 failure:

1) AlbumTest\Controller\AlbumControllerTest::testIndexActionCanBeAccessed
Failed asserting response code "200", actual status code is "500"

/var/www/zf2-tutorial/vendor/ZF2/library/Zend/Test/PHPUnit/Controller/AbstractControllerTestCase.php
/var/www/zf2-tutorial/module/Album/test/AlbumTest/Controller/AlbumControllerTest.php:22

FAILURES!
Tests: 1, Assertions: 0, Failures: 1.

The failure message doesn’t tell us much, apart from that the expected status code is not 200, but 500. To get a bit

72.5. A failing test case 241

Zend Framework 2 Documentation, Release 2.3.5

more information when something goes wrong in a test case, we set the protected $t raceError member to t rue.
Add the following just above the setUp method in our AlbumControllerTest class:

protected StraceError = true;

Running the phpunit command again and we should see some more information about what went wrong in our test.
The main error message we are interested in should read something like:

Zend\ServiceManager\Exception\ServiceNotFoundException: Zend\ServiceManager\ServiceManager:

was unable to fetch or create an instance for Zend\Db\Adapter\Adapter

From this error message it is clear that not all our dependencies are available in the service manager. Let us take a look
how can we fix this.

72.6 Configuring the service manager for the tests

The error says that the service manager can not create an instance of a database adapter for us. The database adapter
is indirectly used by our Album\Model\AlbumTable to fetch the list of albums from the database.

The first thought would be to create an instance of an adapter, pass it to the service manager and let the code run from
there as is. The problem with this approach is that we would end up with our test cases actually doing queries against
the database. To keep our tests fast, and to reduce the number of possible failure points in our tests, this should be
avoided.

The second thought would be then to create a mock of the database adapter, and prevent the actual database calls by
mocking them out. This is a much better approach, but creating the adapter mock is tedious (but no doubt we will have
to create it at one point).

The best thing to do would be to mock out our Album\Model\AlbumTable class which retrieves the list of albums
from the database. Remember, we are now testing our controller, so we can mock out the actual call to fetchAll
and replace the return values with dummy values. At this point, we are not interested in how fetchAll retrieves the
albums, but only that it gets called and that it returns an array of albums, so that is why we can get away with this
mocking. When we will test AlbumTable itself, then we will write the actual tests for the fet chA1l1l method.

Here is how we can accomplish this, by modifying the test IndexActionCanBeAccessed test method as fol-
lows:

public function testIndexActionCanBeAccessed()
{
SalbumTableMock = S$this->getMockBuilder (Album\Model\AlbumTable’)
—->disableOriginalConstructor ()
->getMock () ;

SalbumTableMock->expects ($this->once())
—>method (’ fetchAll’)

->will ($this->returnValue (array()));
Manager = Sthis->getApplicationServiceLocator();
~r—->setAllowOverride (true) ;
Ss >r->setService (' Album\Model\AlbumTable’, S$albumTableMock) ;
Sthis—->dispatch(’ /album’) ;

Sthis->assertResponseStatusCode (200) ;

Sthis->assertModuleName (' Album’) ;
Sthis—->assertControllerName (/ Album\Controller\Album’) ;
Sthis—->assertControllerClass (' AlbumController’);

242 Chapter 72. Unit Testing a Zend Framework 2 application

tget

Zend Framework 2 Documentation, Release 2.3.5

21 Sthis—->assertMatchedRouteName (' album’) ;

2 }

By default, the Service Manager does not allow us to replace existing services. As the Album\Model\AlbumTable
was already set, we are allowing for overrides (line 12), and then replacing the real instance of the AlbumTable with
a mock. The mock is created so that it will return just an empty array when the fetchA1l1l method is called. This
allows us to test for what we care about in this test, and that is that by dispatching to the /album URL we get to the
Album module’s AlbumController.

Running the phpunit command at this point, we will get the following output as the tests now pass:

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml

Time: 0 seconds, Memory: 9.00Mb

OK (1 test, 6 assertions)

72.7 Testing actions with POST

One of the most common actions happening in controllers is submitting a form with some POST data. Testing this is
surprisingly easy:

1 public function testAddActionRedirectsAftervValidPost ()
> A

3 SalbumTableMock = S$this->getMockBuilder (' Album\Model\AlbumTable’)
4 —->disableOriginalConstructor ()

5 ->getMock () ;

6

7 SalbumTableMock->expects ($Sthis->once ())

8 —>method (’ saveAlbum’)

9 —>will (Sthis->returnValue (null));

Manager—->setAllowOverride (true) ;
lanager—->setService (' Album\Model\AlbumTable’, S$albumTableMock) ;

15 SpostData = array (

16 "title’ => ’'Led Zeppelin III’,

17 "artist’ => ’'Led Zeppelin’,

18 rid’ = rr,

19)

20 Sthis->dispatch (’ /album/add’, ’POST’, S$postData);
21 Sthis—->assertResponseStatusCode (302);

22

23 Sthis—>assertRedirectTo ('’ /album/’");

24 }

Here we test that when we make a POST request against the /album/add URL, the
Album\Model\AlbumTable‘s saveAlbum will be called and after that we will be redirected back to the
/album URL.

Running phpunit gives us the following output:

72.7. Testing actions with POST 243

20

21

22

23

24

25

26

Zend Framework 2 Documentation, Release 2.3.5

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /home/robert/www/zf2-tutorial/module/Album/test/phpunit.xml

Time: 0 seconds, Memory: 10.75Mb
OK (2 tests, 9 assertions)

Testing the editAction and deleteAction methods can be easily done in a manner similar as shown for the
addAction.

When testing the editAction you will also need to mock out the get A1bum method:

SalbumTableMock->expects (Sthis->once ())
—>method (" getAlbum’)
—>will (Sthis->returnValue (new \Album\Model\Album()));

72.8 Testing model entities

Now that we know how to test our controllers, let us move to an other important part of our application - the model
entity.

Here we want to test that the initial state of the entity is what we expect it to be, that we can convert the model’s
parameters to and from an array, and that it has all the input filters we need.

Create the file AlbumTest .php in module/Album/test/AlbumTest/Model directory with the following
contents:

<?php
namespace AlbumTest\Model;

use Album\Model\Album;
use PHPUnit_Framework_TestCase;

class AlbumTest extends PHPUnit_Framework_TestCase
{

public function testAlbumInitialState()

{

Salbum = new Album();

Sthis—->assertNull (

Salbum->artist,

""artist" should initially be null’
)i
Sthis—->assertNull (

Salbum->id,

""id" should initially be null’
)i
Sthis—->assertNull (

Salbum->title,

""title" should initially be null’
)i

public function testExchangeArraySetsPropertiesCorrectly ()

244 Chapter 72. Unit Testing a Zend Framework 2 application

28

29

30

31

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Zend Framework 2 Documentation, Release 2.3.5

Salbum = new Album();

Sdata = array(’artist’ => ’some art
rid’ => 123,
"title’ => ’'some tit

Salbum->exchangeArray ($data) ;

Sthis—->assertSame (
Sdata[’artist’],
Salbum->artist,
""artist" was not set correctly’
)
Sthis—->assertSame (
Sdatal[’id’],
Salbum->id,
'"id" was not set correctly’
)i
Sthis—->assertSame (
Sdata[’title’],
Salbum->title,
""title" was not set correctly’
)

ist’,

le’);

public function testExchangeArraySetsPropertiesToNullIfKeysAreNotPresent ()

{
Salbum = new Album();
Salbum->exchangeArray (array (' artist’
14 idl
"title’
Salbum->exchangeArray (array()) ;

Sthis—->assertNull (

Salbum->artist, ’"artist" should

)
Sthis—->assertNull (
Salbum->id, ’"id" should have de
)
Sthis—->assertNull (
Salbum->title,

""title" should h

)

public function testGetArrayCopyReturnsA
{

Salbum = new Album();

Sdata = array(’artist’ => ’'some art
rid’ => 123,
"title’ => ’"some tit

Salbum->exchangeArray ($Sdata);
ScopyArray = S$album->getArrayCopy();

Sthis->assertSame (
Sdata[’artist’],
ScopyArray[’artist’],

=> ’'some artist’,
=> 123,
=> ’some title’));

have defaulted to null’

faulted to null’

ave defaulted to null’

nArrayWithPropertyValues ()

ist’,

le”);

72.8. Testing model entities

245

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Zend Framework 2 Documentation, Release 2.3.5

’

""artist" was not set correctly
)i
Sthis->assertSame (
Sdatal’id’],
ScopyArray[’id’],
'"id" was not set correctly’
)i
Sthis—->assertSame (
Sdatal[’'title’],
ScopyArray[’'title’],
""title" was not set correctly’
)i

public function testInputFiltersAreSetCorrectly()

{
Salbum = new Album();
SinputFilter = Salbum->getInputFilter();
Sthis—->assertSame (3, S$inputFilter—->count ());
Sthis->assertTrue ($SinputFilter—->has (’artist’));
Sthis->assertTrue ($SinputFilter->has (’id’));
Sthis->assertTrue ($inputFilter->has('title’));
}

}
We are testing for 5 things:
1. Are all of the Album’s properties initially set to NULL?
Will the Album’s properties be set correctly when we call exchangeArray () ?
Will a default value of NULL be used for properties whose keys are not present in the Sdata array?

Can we get an array copy of our model?

A

Do all elements have input filters present?
If we run phpunit again, we will get the following output, confirming that our model is indeed correct:

PHPUnit 3.7.13 by Sebastian Bergmann.
Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml
Time: 0 seconds, Memory: 11.00Mb

OK (7 tests, 25 assertions)

72.9 Testing model tables

The final step in this unit testing tutorial for Zend Framework 2 applications is writing tests for our model tables.

This test assures that we can get a list of albums, or one album by it’s ID, and that we can save and delete albums from
the database.

To avoid actual interaction with the database itself, we will replace certain parts with mocks.

246 Chapter 72. Unit Testing a Zend Framework 2 application

20

21

22

23

24

25

26

27

28

29

30

Zend Framework 2 Documentation, Release 2.3.5

Create a file AlbumTableTest .php in module/Album/test/AlbumTest /Model with the following con-

tents:

<?php
namespace AlbumTest\Model;

use
use
use
use

Album\Model\AlbumTable;
Album\Model\Album;
Zend\Db\ResultSet\ResultSet;
PHPUnit_Framework_TestCase;

class AlbumTableTest extends PHPUnit_Framework_ TestCase

{

public function testFetchAllReturnsAllAlbums ()
{
SresultSet = new ResultSet ();
SmockTableGateway = $this->getMock (
" Zend\Db\TableGateway\TableGateway’,
array (' select’),
array (),

rr
’

false
)
SmockTableGateway->expects (Sthis->once())
—->method (' select’)
->with ()

Q

->will (Sthis—->returnValue (SresultSe

SalbumTable = new AlbumTable (SmockTableGateway) ;

Sthis—->assertSame (SresultSet, S$albumTable->fetchAll());

£));

Since we are testing the AlbumTable here and not the TableGateway class (which has already been tested in
Zend Framework), we just want to make sure that our AlbumTable class is interacting with the TableGateway
class the way that we expect it to. Above, we're testing to see if the fetchAll () method of AlbumTable will
call the select () method of the $tableGateway property with no parameters. If it does, it should return a
ResultSet object. Finally, we expect that this same ResultSet object will be returned to the calling method.

This

test should run fine, so now we can add the rest of the test methods:

public function testCanRetrieveAnAlbumByItsId()

{

Salbum = new Album();
Salbum->exchangeArray (array (’ id’ => 123,
"artist’ => ’'The Military Wives’,
"title’ => ’In My Dreams’));
SresultSet = new ResultSet ();

SresultSet->setArrayObjectPrototype (new Album());
SresultSet->initialize (array(Salbum));

SmockTableGateway = $this->getMock (
" Zend\Db\TableGateway\TableGateway’,
array (' select’),
array (),
rr
false
)i

72.9. Testing model tables

247

Zend Framework 2 Documentation, Release 2.3.5

19 SmockTableGateway->expects (Sthis->once())

20 ->method (’ select’)

21 ->with (array (’id’ => 123))

2 —>will (Sthis—->returnValue ($SresultSet));
23

24 SalbumTable = new AlbumTable (SmockTableGateway);

25

2% Sthis->assertSame (Salbum, S$albumTable->getAlbum(123));

27 }

28

9 public function testCanDeleteAnAlbumByItsId()
30 {

31 SmockTableGateway = $this->getMock (

k2] " Zend\Db\TableGateway\TableGateway’,

33 array (' delete’),

34 array (),

35 r

36 false

37)i

38 SmockTableGateway—->expects (Sthis—>once())

39 ->method (" delete’)

40 —>with (array (’id’ => 123));
41

2 SalbumTable = new AlbumTable (SmockTableGateway);
43 SalbumTable—->deleteAlbum(123);

44 }

45

46 public function testSaveAlbumWillInsertNewAlbumsIfTheyDontAlreadyHaveAnId ()
47 {

48 SalbumbData = array (

49 "artist’ => 'The Military Wives’,

50 "title’ => ’In My Dreams’

51)i

52 Salbum = new Album();

53 Salbum->exchangeArray (SalbumbData) ;

54

55 SmockTableGateway = $this->getMock (

56 " zend\Db\TableGateway\TableGateway’,
57 array (' insert’),

58 array (),

59 rr

60 false

61)i

62 SmockTableGateway->expects (Sthis—>once())
63 ->method (’ insert’)

64 ->with ($albumbata) ;

65

66 SalbumTable = new AlbumTable (SmockTableGateway);
67 SalbumTable->saveAlbum (Salbum) ;

68 }

69

70 public function testSaveAlbumWillUpdateExistingAlbumsIfTheyAlreadyHaveAnId ()
71 {

7 SalbumData = array (

73 rid’ => 123,

74 "artist’ => 'The Military Wives’,
75 "title’ => ’'In My Dreams’,

76)i

248 Chapter 72. Unit Testing a Zend Framework 2 application

Zend Framework 2 Documentation, Release 2.3.5

7 Salbum = new Album();

78 Salbum->exchangeArray (SalbumData) ;

79

80 SresultSet = new ResultSet();

81 SresultSet->setArrayObjectPrototype (new Album());
82 SresultSet->initialize (array (Salbum));

83

84 SmockTableGateway = $this->getMock (

85 ' Zend\Db\TableGateway\TableGateway’,

36 array (' select’, ’update’),

87 array (),

- rr

89 false

9%)i

91 SmockTableGateway->expects (Sthis->once())

92 ->method (’ select’)

93 ->with (array (’id’ => 123))

94 —>will (Sthis—->returnValue (SresultSet));
95 SmockTableGateway->expects ($Sthis->once())

96 ->method (" update’)

97 ->with (

98 array (

99 "artist’ => ’'The Military Wives’,
100 "title’ => 'In My Dreams’
101),

102 array (’id’ => 123)

103) ;

104

105 SalbumTable = new AlbumTable (SmockTableGateway) ;
106 SalbumTable->saveAlbum (Salbum) ;

107 }

108

1w public function testExceptionIsThrownWhenGettingNonExistentAlbum ()
110 {

11 SresultSet = new ResultSet ();

12 SresultSet->setArrayObjectPrototype (new Album());
113 SresultSet->initialize (array());

114

115 SmockTableGateway = $this->getMock (

116 " zend\Db\TableGateway\TableGateway’,

17 array (' select’),

18 array (),

119 rr

120 false

121) ;

122 SmockTableGateway->expects ($this->once())

123 ->method (’ select’)

124 —>with (array (’id’ => 123))

125 —>will (Sthis->returnValue ($resultSet));
126

127 SalbumTable = new AlbumTable (SmockTableGateway);
128

129 try {

130 SalbumTable->getAlbum (123);

131 }

132 catch (\Exception S$Se) {

133 Sthis->assertSame (' Could not find row 123’, S$e->getMessage());
134 return;

72.9. Testing model tables 249

135

136

137

138

Zend Framework 2 Documentation, Release 2.3.5

Sthis—>fail (' Expected exception was not thrown’);

}

These tests are nothing complicated and they should be self explanatory. In each test we are injecting a mock table
gateway into our AlbumTable and set our expectations accordingly.

We are testing that:

1. We can retrieve an individual album by its ID.

2. We can delete albums.

3. We can save new album.

4. We can update existing albums.

5. We will encounter an exception if we’re trying to retrieve an album that doesn’t exist.
Running phpunit command for one last time, we get the output as follows:

PHPUnit 3.7.13 by Sebastian Bergmann.
Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml
Time: 0 seconds, Memory: 11.50Mb

OK (13 tests, 34 assertions)

72.10 Conclusion

In this short tutorial we gave a few examples how different parts of a Zend Framework 2 MVC application can be
tested. We covered setting up the environment for testing, how to test controllers and actions, how to approach failing
test cases, how to configure the service manager, as well as how to test model entities and model tables.

This tutorial is by no means a definitive guide to writing unit tests, just a small stepping stone helping you develop
applications of higher quality.

250 Chapter 72. Unit Testing a Zend Framework 2 application

CHAPTER 73

Using the EventManager

This tutorial explores the various features of Zend\EventManager.

73.1 Terminology

* An Event is a named action.
* A Listener is any PHP callback that reacts to an event.
* An EventManager aggregates listeners for one or more named events, and triggers events.

Typically, an event will be modeled as an object, containing metadata surrounding when and how it was triggered,
including the event name, what object triggered the event (the “target”), and what parameters were provided. Events
are named, which allows a single listener to branch logic based on the event.

73.2 Getting started

The minimal things necessary to start using events are:
¢ An EventManager instance
* One or more listeners on one or more events
e Acalltotrigger () an event

The simplest example looks something like this:

use Zend\EventManager\EventManager;

rents = new EventManager();

Sevents—>attach (’do’, function (Se) {
Sevent = Se->getName () ;
Sparams = Se->getParams();
printf (
"Handled event "%s", with parameters %s’,

Sevent,
json_encode ($params)

)i

Sparams = array(’' foo’ => ’'bar’, ’'baz’ => ’"bat’);
Sevents—->trigger ('do’, null, S$params);

251

20

21

22

23

24

25

26

27

28

29

30

31

32

33

37

38

39

40

41

42

43

44

Zend Framework 2 Documentation, Release 2.3.5

The above will result in the following:

Handled event "do", with parameters {"foo":"bar","baz":"bat"}

Note: Throughout this tutorial, we use closures as listeners. However, any valid PHP callback can be attached as a
listeners: PHP function names, static class methods, object instance methods, functors, or closures. We use closures

within this post simply for illustration and simplicity.

If you were paying attention to the example, you will have noted the null argument. Why is it there?

Typically, you will compose an EventManager within a class, to allow triggering actions within methods. The
middle argument to t rigger () is the “target”, and in the case described, would be the current object instance. This
gives event listeners access to the calling object, which can often be useful.

use Zend\EventManager\EventManager;
use Zend\EventManager\EventManagerAwareInterface;
use Zend\EventManager\EventManagerInterface;

class Example implements EventManagerAwarelInterface

{
protected Secvents;
S

Sevent

)

w

public function setEventManager (EventManagerInterface

{
Sevents—>setIdentifiers (array (
_ CLASS__,
get_class ($this)
)) i

Sthis->events = S$Sevents;

public function getEventManager ()
{

if (!Sthis->events) {
Sthis->setEventManager (new EventManager());

}

return S$this->events;

public function do(foo, Sbhaz)

{
Sparams = compact (’ foo’, 'baz’);
Sthis->getEventManager () ->trigger (__FUNCTION__ , Sthis, S$params);

Sexample = new Example () ;

Sexample->getEventManager () —>attach(’do’, function(Se) {

Sevent = Se->getName () ;

S get = get_class (Se->getTarget()); // "Example"
Sparams = S$e->getParams () ;

printf (

’

"Handled event "%s" on target "%s", with parameters %s’,

s)

252 Chapter 73. Using the EventManager

45

46

47

48

Zend Framework 2 Documentation, Release 2.3.5

)i
)i

Sexample->do ("bar’, ’'bat’);

The above is basically the same as the first example. The main difference is that we’re now using that middle ar-
gument in order to pass the target, the instance of Example, on to the listeners. Our listener is now retrieving that
($e—>getTarget ()), and doing something with it.

If you’re reading this critically, you should have a new question: What is the call to set Identifiers () for?

73.3 Shared managers

One aspect that the EventManager implementation provides is an ability to compose a
SharedEventManagerInterface implementation.

Zend\EventManager\SharedEventManagerInterface describes an object that aggregates listeners for
events attached to objects with specific identifiers. It does not trigger events itself. Instead, an EventManager in-
stance that composes a SharedEventManager will query the SharedEventManager for listeners on identifiers
it’s interested in, and trigger those listeners as well.

How does this work, exactly?
Consider the following:

use Zend\EventManager\SharedEventManager;

redEve s = new SharedEventManager () ;
redEvents->attach (' Example’, ’'do’, function (Se) {
= Se->getName () ;

get_class (Se->getTarget ()); // "Example"
= Se—>getParams () ;

14

"Handled event "%s" on target "%s", with parameters %s’,
rent,

arget,
json_encode (Sparams)
)
1)

This looks almost identical to the previous example; the key difference is that there is an additional argument at the
start of the list, ' Example’. This code is basically saying, “Listen to the ‘do’ event of the ‘Example’ target, and,
when notified, execute this callback.”

This is where the setIdentifiers () argument of EventManager comes into play. The method allows passing
a string, or an array of strings, defining the name or names of the context or targets the given instance will be interested
in. If an array is given, then any listener on any of the targets given will be notified.

So, getting back to our example, let’s assume that the above shared listener is registered, and also that the Example
class is defined as above. We can then execute the following:

Sexample = new Example();

Sexample->getEventManager () —>setSharedManager ($sharedEvents) ;
Sexample->do ('bar’, ’'bat’);

and expect the following to be echo‘d:

73.3. Shared managers 253

Zend Framework 2 Documentation, Release 2.3.5

Handled event "do" on target "Example", with parameters {"foo":"bar","baz":"bat"}

Now, let’s say we extended Example as follows:

class SubExample extends Example
{
}

One interesting aspect of our setEventManager () method is that we defined it to listen both on __ CLASS_
and get_class ($this). This means that calling do () on our SubExample class would also trigger the shared
listener! It also means that, if desired, we could attach to specifically SubExample, and listeners attached to only
the Example target would not be triggered.

Finally, the names used as contexts or targets need not be class names; they can be some name that only has meaning
in your application if desired. As an example, you could have a set of classes that respond to “log” or “cache” — and
listeners on these would be notified by any of them.

Note: We recommend using class names, interface names, and/or abstract class names for identifiers. This makes
determining what events are available easier, as well as finding which listeners might be attaching to those events.

Interfaces make a particularly good use case, as they allow attaching to a group of related classes a single operation.

At any point, if you do not want to notify shared listeners, pass a null value to set SharedManager () :
Sevents->setSharedManager (null) ;

and they will be ignored. If at any point, you want to enable them again, pass the SharedEventManager instance:

Sevents—->setSharedManager (SsharedEvents) ;

254 Chapter 73. Using the EventManager

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

CHAPTER 74

Wildcards

So far, with both a normal EventManager instance and with the SharedEventManager instance, we’ve seen
the usage of singular strings representing the event and target names to which we want to attach. What if you want to

attach a listener to multiple events or targets?
The answer is to supply an array of events or targets, or a wildcard, *.
Consider the following examples:

// Multiple named events:
Sevents—->attach (
array ('’ foo’, ’bar’, ’'baz’), // events
Slistener

)i

// All events via wildcard:
Sevents—>attach (
"x", // all events
Slistener

)i

// Multiple named targets:
SsharedEvents—>attach (
array (' Foo’, ’'Bar’, ’'Baz’), // targets
"doSomething’, // named event
Slistener

)i

// All targets via wildcard
SsharedEvents—->attach (
"x', // all targets
"doSomething’, // named event
Slistener

)i

// Mix and match: multiple named events on multiple named targets:

SsharedEvents—>attach (
array (' Foo’, ’'Bar’, ’'Baz’), // targets
array ('’ foo’, ’bar’, ’'baz’), // events
Slistener

)i

// Mix and match: all events on multiple named targets:
SsharedEvents—->attach (

255

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Zend Framework 2 Documentation, Release 2.3.5

array (' Foo’, ’'Bar’, ’'Baz’), // targets
"x", // events
Slistener

)i

// Mix and match: multiple named events on all targets:
SsharedEvents—->attach (

"«', // targets

array (' foo’, ’bar’, ’'baz’), // events

Slistener

)i

// Mix and match: all events on all targets:
SsharedEvents—>attach (

%', // targets

"x", // events

Slistener

)i

The ability to specify multiple targets and/or events when attaching can slim down your code immensely.

256

Chapter 74. Wildcards

20
21
22
23
24
25
26
27
28
29

30

32

33

CHAPTER 75

Listener aggregates

Another approach to listening to multiple events is via a concept of listener aggregates, represented by
Zend\EventManager\ListenerAggregateInterface. Via this approach, a single class can listen to mul-
tiple events, attaching one or more instance methods as listeners.

This interface defines two methods, attach (EventManagerInterface S$events) and
detach (EventManagerInterface $events). Basically, you pass an EventManager instance to
one and/or the other, and then it’s up to the implementing class to determine what to do.

As an example:

use Zend\EventManager\EventInterface;

use Zend\EventManager\EventManagerInterface;

use Zend\EventManager\ListenerAggregateInterface;
use Zend\Log\Logger;

class LogEvents implements ListenerAggregatelInterface
{

protected Slisteners = array();

protected Slog;

public function __construct (Logger $log)

{

$this->log = Slog;

Sevents)

public function attach (EventManagerInterface
{
Sthis->listeners[] = Sevents->attach(’do’, array(sSthis, ’'log’));
Sthis->listeners[] = S$events->attach(’doSomethingElse’, array(sthis, ’"log’));

public function detach (EventCollection Sevents)

{

foreach (Sthis->listeners as $index => $listener) {

if (Sevents—->detach ($listener)) {
unset (Sthis->listeners[Sindex];

0
()

public function log(EventInterface

{

Sevent = S$e->getName () ;

257

Zend Framework 2 Documentation, Release 2.3.5

Sparams = Se->getParams() ;

Sthis->log->info (sprintf (' %s: %s’, S$event, json_encode (Sparams)));

}

You can attach this using either attach () or attachAggregate ():

SlogListener = new LogEvents (Slogger);

ents->attachAggregate ($logListener); // OR
Sevents—->attach($logListener);

Any events the aggregate attaches to will then be notified when triggered.
Why bother? For a couple of reasons:

* Aggregates allow you to have stateful listeners. The above example demonstrates this via the composition of
the logger; another example would be tracking configuration options.

* Aggregates make detaching listeners easier. =~ When you call attach () normally, you receive a
Zend\Stdlib\CallbackHandler instance; the only way to detach () alistener is to pass that instance
back — which means if you want to detach later, you need to keep that instance somewhere. Aggregates typically
do this for you — as you can see in the example above.

75.1 Introspecting results

Sometimes you’ll want to know what your listeners returned. One thing to remember is that you may have multiple
listeners on the same event; the interface for results must be consistent regardless of the number of listeners.

The EventManager implementation by default returns a Zend\EventManager\ResponseCollection in-
stance. This class extends PHP’s SplStack, allowing you to loop through responses in reverse order (since the last
one executed is likely the one you’re most interested in). It also implements the following methods:

e first () will retrieve the first result received
e last () will retrieve the last result received

e contains ($value) allows you to test all values to see if a given one was received, and returns simply a
boolean t rue if found, and false if not.

Typically, you should not worry about the return values from events, as the object triggering the event shouldn’t really
have much insight into what listeners are attached. However, sometimes you may want to short-circuit execution if
interesting results are obtained.

75.2 Short-circuiting listener execution

You may want to short-ciruit execution if a particular result is obtained, or if a listener determines that something is
wrong, or that it can return something quicker than the target.

As examples, one rationale for adding an EventManager is as a caching mechanism. You can trigger one event
early in the method, returning if a cache is found, and trigger another event late in the method, seeding the cache.

The EventManager component offers two ways to handle this. The first is to pass a callback as the last argument
to trigger () ;if that callback returns a boolean t rue, execution is halted.

Here’s an example:

258 Chapter 75. Listener aggregates

Zend Framework 2 Documentation, Release 2.3.5

public function someExpensiveCall (Scriterial, Scriteria?l)
{
irams = compact ('criterial’, ’‘criteria2’);
Sresults = $this->getEventManager () ->trigger (

_ FUNCTION__,

Sthis,

Sparams,
function ($r
return (

{

)
Sr instanceof SomeResultClass);

)
if (Sresults->stopped()) {
return Sresults—->last();

// ... do some work

}

With this paradigm, we know that the likely reason of execution halting is due to the last result meeting the test callback
criteria; as such, we simply return that last result.

The other way to halt execution is within a listener, acting on the Event object it receives. In this case, the listener calls
stopPropagation (true), and the EventManager will then return without notifying any additional listeners.

Sevents->attach(’do’, function (Se) {
ce—>stopPropagation();
return new SomeResultClass();

)i

This, of course, raises some ambiguity when using the trigger paradigm, as you can no longer be certain that the last
result meets the criteria it’s searching on. As such, we recommend that you standardize on one approach or the other.

75.3 Keeping it in order

On occasion, you may be concerned about the order in which listeners execute. As an example, you may want to do
any logging early, to ensure that if short-circuiting occurs, you’ve logged; or if implementing a cache, you may want
to return early if a cache hit is found, and execute late when saving to a cache.

Each of EventManager: :attach () and SharedEventManager: :attach () accept one additional argu-
ment, a priority. By default, if this is omitted, listeners get a priority of 1, and are executed in the order in which they
are attached. However, if you provide a priority value, you can influence order of execution.

* Higher priority values execute earlier.
* Lower (negative) priority values execute later.
To borrow an example from earlier:

Spriority = 100;
Sevents—->attach (' Example’, ’"do’, function(Se) {
= Se—>getName () ;

&

get_class (Se->getTarget ()); // "Example"

Sparams = Se->getParams();
printf (
"Handled event "%s" on target "%s", with parameters %s’,
Sevent,
Starget,
json_encode ($params)

75.3. Keeping it in order 259

Zend Framework 2 Documentation, Release 2.3.5

)i

}, Spriority);

This would execute with high priority, meaning it would execute early. If we changed $priority to-100, it would
execute with low priority, executing late.

While you can’t necessarily know all the listeners attached, chances are you can make adequate guesses when neces-
sary in order to set appropriate priority values. We advise avoiding setting a priority value unless absolutely necessary.

75.4 Custom event objects

Hopefully some of you have been wondering, “where and when is the Event object created”? In all of the exam-
ples above, it’s created based on the arguments passed to trigger () — the event name, target, and parameters.
Sometimes, however, you may want greater control over the object.

As an example, one thing that looks like a code smell is when you have code like this:

SrouteMatch = S$e->getParam(’ route-match’, false);
if (!SrouteMatch) {

// Oh noes! we cannot do our work! whatever shall we do?!?!?!

}

The problems with this are several. First, relying on string keys is going to very quickly run into problems — typos
when setting or retrieving the argument can lead to hard to debug situations. Second, we now have a documentation
issue; how do we document expected arguments? how do we document what we’re shoving into the event? Third, as
a side effect, we can’t use IDE or editor hinting support — string keys give these tools nothing to work with.

Similarly, consider how you might represent a computational result of a method when triggering an event. As an
example:

// in the method:
rams[’/__RESULT’] = S$ScomputedResult;
rents—>trigger (__FUNCTION__ . ’.post’, Sthis, Sparams);

// in the listener:
Sresult = Se->getParam(’__ _RESULT_ ');
if (!Sresult) {
// Oh noes! we cannot do our work! whatever shall we do?!?!?!

}

Sure, that key may be unique, but it suffers from a lot of the same issues.

So, the solution is to create custom events. As an example, we have a custom MvcEvent in the ZF2 MVC layer. This
event composes the application instance, the router, the route match object, request and response objects, the view
model, and also a result. We end up with code like this in our listeners:

= Se->getResponse () ;
Sres e—>getResult () ;
if (is_string {
S tent = S$view->render (' layout.phtml’, array(’content’ => Sresult));

con

>sponse—>setContent ($Scontent) ;

But how do we use this custom event? Simple: trigger () can accept an event object instead of any of the event
name, target, or params arguments.

260 Chapter 75. Listener aggregates

Zend Framework 2 Documentation, Release 2.3.5

rent = new CustomEvent () ;
Sevent->setSomeKey (Svalue) ;

// Injected with event name and target:
Sevents—->trigger (' foo’, $this, S$event);

// Injected with event name:
Sevent—->setTarget ($this);

<=

>vents—->trigger (' foo’, Sevent);

// Fully encapsulates all necessary properties:
rent—>setName (' foo’);
vent->setTarget (Sthis

rents—->trigger ($event) ;

// Passing a callback following the event object works for
// short—-circuiting, too.
Sresults = Sevents->trigger(’ foo’, S$this, S$event, S$callback);

This is a really powerful technique for domain-specific event systems, and definitely worth experimenting with.

75.5 Putting it together: Implementing a simple caching system

In previous sections, I indicated that short-circuiting is a way to potentially implement a caching solution. Let’s create
a full example.

First, let’s define a method that could use caching. You’ll note that in most of the examples, I've used __ FUNCTION___
as the event name; this is a good practice, as it makes it simple to create a macro for triggering events, as well as helps
to keep event names unique (as they’re usually within the context of the triggering class). However, in the case of a
caching example, this would lead to identical events being triggered. As such, I recommend postfixing the event name
with semantic names: “do.pre”, “do.post”, “do.error”, etc. I'll use that convention in this example.

Additionally, you’ll notice that the Sparams I pass to the event is usually the list of parameters passed to the method.
This is because those are often not stored in the object, and also to ensure the listeners have the exact same context
as the calling method. But it raises an interesting problem in this example: what name do we give the result of the
method? One standard that has emerged is the use of ___RESULT__, as double-underscored variables are typically
reserved for the sytem.

Here’s what the method will look like:

public function someExpensiveCall (Scriterial, Scriteria?2)
{
= compact (‘criterial’, ’‘criterial2’);
5 = $this->getEventManager () ->trigger (
FUNCTION_ _ . ' .pre’,

Sthis,
Sparams,
function (Sr) {
return ($r instanceof SomeResultClass);

)i

if (Sresults->stopped()) {
return Sresults—->last ();

// ... do some work

75.5. Putting it together: Implementing a simple caching system 261

22

Zend Framework 2 Documentation, Release 2.3.5

Sparams[’__RESULT__'] = ScalculatedResult;
Sthis->events () ->trigger (__FUNCTION__ . ’.post’, S$this, Sparams);

return ScalculatedResult;

Now, to provide some caching listeners. We’ll need to attach to each of the “someExpensiveCall.pre” and “someEx-
pensiveCall.post” methods. In the former case, if a cache hit is detected, we return it, and move on. In the latter, we
store the value in the cache.

We’ll assume $cache is defined, and follows the paradigms of Zend\Cache. We’ll want to return early if a hit
is detected, and execute late when saving a cache (in case the result is modified by another listener). As such, we’ll
set the “someExpensiveCall.pre” listener to execute with priority 100, and the “someExpensiveCall.post” listener to
execute with priority —100.

Sevents->attach (’ someExpensiveCall.pre’, function($e) use (Scache) {

Sparams = Se—>getParams();
Skey = md5 (json_encode (Sparams)) ;
Shit = Scache->load (Skey) ;
return Shit;
b, 100);

Sevents->attach (’ someExpensiveCall.post’, function($e) use ($Scache) {
Sparams = S$e->getParams () ;

Sresult = Sparams[’__RESULT__'1;

unset ($params[’___RESULT__'1);

Skey = md5 (json_encode ($params)) ;

e->save ($result, Skey);

Note: The above could have been done within a ListenerAggregate, which would have allowed keeping the
$cache instance as a stateful property, instead of importing it into closures.

Another approach would be to move the body of the method to a listener as well, which would allow using the priority
system in order to implement caching. That would look like this:

public function setEventManager (EventManagerInterface Sevents)

{
Sthis->events = S$Sevents;
Sevents->setIdentifiers(array(__ CLASS_ , get_class(Sthis)));
Sevents->attach (' someExpensiveCall’, array(Sthis, ’doSomeExpensiveCall’));
}
public function someExpensiveCall (Scriterial, Scriteria?l)
{
Sparams = compact ('criterial’, ’‘criterial’);
Sresults = S$this->getEventManager () ->trigger (
__FUNCTION__,
Sthis,
Sparams,
function (Sr) |
return ($r instanceof SomeResultClass);
}
)
return Sresults—>last ();
}

public function doSomeExpensiveCall (Se)

262 Chapter 75. Listener aggregates

23

24

25

26

27

Zend Framework 2 Documentation, Release 2.3.5

// ... do some work
Se->setParam(’___RESULT__ ', ScalculatedResult);
return ScalculatedResult;

}

The listeners would then attach to the “someExpensiveCall” event, with the cache lookup listener listening at high
priority, and the cache storage listener listening at low (negative) priority.

Sure, we could probably simply add caching to the object itself - but this approach allows the same handlers to be
attached to multiple events, or to attach multiple listeners to the same events (e.g. an argument validator, a logger and
a cache manager). The point is that if you design your object with events in mind, you can easily make it more flexible
and extensible, without requiring developers to actually extend it — they can simply attach listeners.

75.6 Conclusion

The EventManager is a powerful component. It drives the workflow of the MVC layer, and is used in countless
components to provide hook points for developers to manipulate the workflow. It can be put to any number of uses
inside your own code, and is an important part of your Zend Framework toolbox.

75.6. Conclusion 263

Zend Framework 2 Documentation, Release 2.3.5

264 Chapter 75. Listener aggregates

CHAPTER 76

Advanced Configuration Tricks

Configuration of Zend Framework 2 applications happens in several steps:

* Initial configuration is passed to the Application instance and used to seed the ModuleManager and
ServiceManager. In this tutorial, we will call this configuration system configuration.

* The ModuleManager‘s ConfigListener aggregates configuration and merges it while modules are being
loaded. In this tutorial, we will call this configuration application configuration.

* Once configuration is aggregated from all modules, the ConfigListener will also merge application con-
figuration globbed in specified directories (typically config/autoload/).

* Finally, immediately prior to the merged application configuration being passed to the ServiceManager, it
is passed to a special EVENT_MERGE_CONF IG event to allow further modification.

In this tutorial, we’ll look at the exact sequence, and how you can tie into it.

76.1 System configuration

To begin module loading, we have to tell the Application instance about the available modules and where
they live, optionally provide some information to the default module listeners (e.g., where application configura-
tion lives, and what files to load; whether to cache merged configuration, and where; etc.), and optionally seed the
ServiceManager. For purposes of this tutorial we will call this the system configuration.

When using the skeleton application, the system configuration is by default in
config/application.config.php. The defaults look like this:

<?php
return array (
// This should be an array of module namespaces used in the application.
"modules’ => array (
"Application’,
) 4

// These are various options for the listeners attached to the ModuleManager
"module_listener_options’ => array (
// This should be an array of paths in which modules reside.
// If a string key is provided, the listener will consider that a module
// namespace, the value of that key the specific path to that module’s
// Module class.
"module_paths’ => array (
. /module’,
' ./vendor’,

265

20

21

22

23

24

25

26

27

28

29

31

32

34

35

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Zend Framework 2 Documentation, Release 2.3.5

)i

The system configuration is for the bits and pieces related to the MVC that run before your application is ready. The

)y

// Used to create an own service manager. May contain one or more child arrays.

),

// An array of paths from which to glob configuration files after
// modules are loaded. These effectively overide configuration
// provided by modules themselves. Paths may use GLOB_BRACE notation.
"config_glob_paths’ => array(
"config/autoload/{, *.}{global,local}.php’,
) 14

// Whether or not to enable a configuration cache.

// If enabled, the merged configuration will be cached and used in
// subsequent requests.

//’config_cache_enabled’ => SbooleanValue,

// The key used to create the configuration cache file name.
//’config _cache_key’ => SstringKey,

// Whether or not to enable a module class map cache.

// If enabled, creates a module class map cache which will be used
// by in future requests, to reduce the autoloading process.
//’module_map_cache_enabled’ => SbooleanValue,

// The key used to create the class map cache file name.
//’module_map_cache_key’ => SstringKey,

// The path in which to cache merged configuration.
//’cache_dir’ => SstringPath,

// Whether or not to enable modules dependency checking.

// Enabled by default, prevents usage of modules that depend on other modules

// that weren’t loaded.
// ’check_dependencies’ => true,

//’service_listener_options’ => array(

/7
//
/7
/7
//
//
/7))

array (
’service_manager’ => SstringServiceManagerName,
‘config_key”’ => SstringConfigKey,
’interface’ => SstringOptionallnterface,
"method’ => SstringRequiredMethodName,

),

// Initial configuration with which to seed the ServiceManager.
// Should be compatible with Zend\ServiceManager\Config.
// ’service_manager’ => array(),

configuration is usually brief, and quite minimal.

Also, system configuration is used immediately, and is not merged with any other configuration — which means, with

the exception of the values under the ‘service_manager’ key, it cannot be overridden by a module.

This leads us to our first trick: how do you provide environment-specific system configuration?

266

Chapter 76. Advanced Configuration Tricks

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

76.1.1 Environment-specific system configuration

What happens when you want to change the set of modules you use based on the environment? Or if the configuration

caching should be enabled based on environment?

It is for this reason that the default system configuration we provide in the skeleton application is in PHP; providing it

in PHP means you can programmatically manipulate it.
As an example, let’s make the following requirements:
* We want to use the ZendDeveloperTools module in development only.

* We want to have configuration caching on in production only.

To make this happen, we’ll set an environment variable in our web server configuration, APP_ENV. In Apache, you’d
put a directive like the following in either your system-wide apache.conf or httpd. conf, or in the definition

for your virtual host; alternately, it can be placed in an . htaccess file.

SetEnv "APP_ENV" "development"

For other web servers, consult the web server documentation to determine how to set environment variables.
To simplify matters, we’ll assume the environment is “production” if no environment variable is present.

We’ll modify the config/application.config.php file to read as follows:

<?php
Senv = getenv (/APP_ENV’) ?: ’production’;

// Use the Senv value to determine which modules to load
smodules = array (
"Application’,
)i
if (Senv == ’'development’) {
Smodules[] = ’ZendDeveloperTools’;

return array (
"modules’ => Smodules,

"module_listener_options’ => array (
"module_paths’ => array (
’ . /module’,
’./vendor’,

)

"config_glob_paths’ => array(
"config/autoload/{, *.}{global,local}.php’,

)

// Use the Senv value to determine the state of the flag
"config_cache_enabled’ => ($env == ’production’),

"config_cache_key’ => ’"app_config’,

// Use the Senv value to determine the state of the flag
"module_map_cache_enabled’ => ($env == ’'production’),

"module_map_cache_key’ => 'module_map’,

"cache_dir’ => ’data/config/’,

76.1. System configuration

Zend Framework 2 Documentation, Release 2.3.5

// Use the Senv value to determine the state of the flag
"check_dependencies’ => ($Senv != ’'production’),
)I
)i

This approach gives you flexibility to alter system-level settings.

However, how about altering application specific settings (not system configuration) based on the environment?

76.1.2 Environment-specific application configuration

Sometimes you want to change application configuration to load things such as database adapters, log
writers, cache adapters, and more based on the environment. These are typically managed in the ser-
vice manager, and may be defined by modules. You can override them at the application level via
Zend\ModuleManager\Listener\ConfigListener, by specifying a glob path in the system configura-
tion — the module_listener_options.config _glob_paths key from the previous examples.

The default value for this is config/autoload/{, .} {global, local} .php. What this means is that it will
look for application configuration files in the config/autoload directory, in the following order:

* global.php

* x.global.php
* local.php

* x.local.php

This allows you to define application-level defaults in “global” configuration files, which you would then commit to
your version control system, and environment-specific overrides in your “local” configuration files, which you would
omit from version control.

This is a great solution for development, as it allows you to specify alternate configuration that’s specific to your devel-
opment environment without worrying about accidently deploying it. However, what if you have more environments
—such as a “testing” or “staging” environment — and they each have their own specific overrides?

Again, the application environment variable comes to play. We can alter the glob path in the system configuration
slightly:

"config_glob_paths’ => array (
sprintf (' config/autoload/{, ».}{global, $s,local}.php’, S$env)
),

The above will allow you to define an additional set of application configuration files per environment; furthermore,
these will be loaded only if that environment is detected!

As an example, consider the following tree of configuration files:

config/
autoload/
global.php
local.php

users.development .php
users.testing.php
users.local.php

If Senv evaluates to test ing, then the following files will be merged, in the following order:

268 Chapter 76. Advanced Configuration Tricks

Zend Framework 2 Documentation, Release 2.3.5

global.php
users.testing.php
local.php
users.local.php

Note that users.development . php is not loaded — this is because it will not match the glob pattern!

Also, because of the order in which they are loaded, you can predict which values will overwrite the others, allowing
you to both selectively overwrite as well as debug later.

Note: The files under config/autoload/ are merged after your module configuration, detailed in next section.
We have detailed it here, however, as setting up the application configuration glob path happens within the system

configuration (config/application.config.php).

76.2 Module Configuration

One responsibility of modules is to provide their own configuration to the application. Modules have two general
mechanisms for doing this.

First, modules that either implement Zend\ModuleManager\Feature\ConfigProviderInterface
and/or a getConfig () method can return their configuration. The default, recommended implementation of the
getConfig () method is:

public function getConfig()
{

return include __DIR__ . ’/config/module.config.php’;

}

where module.config.php returns a PHP array. From that PHP array you can provide general configuration
as well as configuration for all the available Manager classes provided by the ServiceManager. Please refer to the
Configuration mapping table to see which configuration key is used for each specific Manager.

Second, modules can implement a number of interfaces and/or methods related to specific service manager or plugin
manager configuration. You will find an overview of all interfaces and their matching Module Configuration functions
inside the Configuration mapping table.

All interfaces are in the Zend\ModuleManager\Feature namespace, and each is expected to return an array of
configuration for a service manager, as denoted in the section on default service configuration.

76.2. Module Configuration 269

S

Zend Framework 2 Documentation, Release 2.3.5

76.3 Configuration mapping table

Manager name Interface name Module Method name Config key

name
ControllerPluginMaragerrollerPluginProvidernIgeeld@atceol lerPluginCordritor@ller_plugins
ControllerManager | ControllerProviderInterfagetControllerConfig()controllers
FilterManager FilterProviderInterface | getFilterConfig () filters
FormElementManager FormElementProviderIntenfagetFormElementConfig (form_elements
HydratorManager HydratorProviderInterfagegetHydratorConfig () | hydrators
InputFilterManager InputFilterProviderInterfageelnputFilterConfig @nput_filters
RoutePluginManager RouteProviderInterface getRouteConfig() route_manager
SerializerAdapterMaSegealizerProviderInterfagetSerializerConfig()serializers
Servicelocator ServiceProviderInterface getServiceConfig() service_manager
ValidatorManager | ValidatorProviderInterfaocgetValidatorConfig() validators
ViewHelperManager | ViewHelperProviderInterfagetViewHelperConfig()view_helpers
LogProcessorManagerdogProcessorProviderInterdatctkogProcessorConfiglog_processors
LogWriterManager LogWriterProviderInterfaogetLogWriterConfig log_writers

76.4 Configuration Priority

Considering that you may have service configuration in your module configuration file, what has precedence?
The order in which they are merged is:

* configuration returned by the various service configuration methods in a module class

* configuration returned by getConfig ()

In other words, your getConfig () win over the various service configuration methods. Additionally, and of partic-
ular note: the configuration returned from those methods will not be cached.

Note: Use the various service configuration methods when you need to define closures or instance callbacks for
factories, abstract factories, and initializers. This prevents caching problems, and also allows you to write your con-

figuration files in other markup formats.

76.5 Manipulating merged configuration

Occasionally you will want to not just override an application configuration key, but actually remove it. Since merging
will not remove keys, how can you handle this?

Zend\ModuleManager\Listener\ConfigListener triggers a special event,
Zend\ModuleManager\ModuleEvent : : EVENT_MERGE_CONFIG, after merging all configuration, but
prior to it being passed to the ServiceManager. By listening to this event, you can inspect the merged
configuration and manipulate it.

The ConfigListener itself listens to the event at priority 1000 (i.e., very high), which is when the configuration
is merged. You can tie into this to modify the merged configuration from your module, via the init () method.

namespace Foo;

use Zend\ModuleManager\ModuleEvent;
use Zend\ModuleManager\ModuleManager;

270 Chapter 76. Advanced Configuration Tricks

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

class Module

{

}

public function init (ModuleManager SmoduleManager)

{

Sevents = SmoduleManager->getEventManager () ;

// Registering a listener at default priority, 1, which will trigger
// after the ConfigListener merges config.
Sevents->attach (ModuleEvent: :EVENT_MERGE_CONFIG, array($this, ’onMergeConfig’));

public function onMergeConfig(ModuleEvent S$e)

{

= Se->getConfiglListener();

= SconfiglListener->getMergedConfig (false);

// Modify the configuration; here, we’ll remove a specific key:
if (isset (Sconfig[’some_key’1)) {
unset (Sconfig[’ some_key’]);

// Pass the changed configuration back to the listener:
SconfiglListener->setMergedConfig($confiqg);

At this point, the merged application configuration will no longer contain the key some_key.

Note: If a cached config is used by the ModuleManager, the EVENT_MERGE_CONF IG event will not be triggered.
However, typically that means that what is cached will be what was originally manipulated by your listener.

76.6 Configuration merging workflow

To cap off the tutorial, let’s review how and when configuration is defined and merged.

* System configuration

Defined in config/application.config.php

No merging occurs

Allows manipulation programmatically, which allows the ability to:
+ Alter flags based on computed values
* Alter the configuration glob path based on computed values

Configuration is passed to the Application instance, and then the ModuleManager in order to ini-
tialize the system.

» Application configuration
— The ModuleManager loops through each module class in the order defined in the system configuration
% Service configuration defined in Module class methods is aggregated

% Configuration returned by Module: :getConfig () is aggregated

76.6. Configuration merging workflow 271

Zend Framework 2 Documentation, Release 2.3.5

— Files detected from the service configuration config_glob_paths setting are merged, based on the
order they resolve in the glob path.

— ConfigListener triggers EVENT_MERGE_CONFIG: - ConfigListener merges configuration -
Any other event listeners manipulate the configuration

— Merged configuration is finally passed to the ServiceManager

272 Chapter 76. Advanced Configuration Tricks

R 2 N v

CHAPTER 77

Using Zend\Navigation in your Album Module

In this tutorial we will use the Zend\Navigation component to add a navigation menu to the black bar at the top of the
screen, and add breadcrumbs above the main site content.

77.1 Preparation

In a real world application, the album browser would be only a portion of a working website. Usually the user would
land on a homepage first, and be able to view albums by using a standard navigation menu. So that we have a site
that is more realistic than just the albums feature, lets make the standard skeleton welcome page our homepage, with
the /album route still showing our album module. In order to make this change, we need to undo some work we did
earlier. Currently, navigating to the root of your app (/) routes you to the AlbumController‘s default action. Let’s
undo this route change so we have two discrete entry points to the app, a home page, and an albums area.

module/Application/config/module.config.php:

"home’ => array (
"type’ => ’Zend\Mvc\Router\Http\Literal’,
"options’ => array (
"route’ = /",
"defaults’ => array (
"controller’ => ’Application\Controller\Index’, // <-- change back here
"action’ => ’index’,

)y
),

This change means that if you go to the home page of your application (http://zf2-tutorial.localhost/),
you see the default skeleton application introduction. Your list of albums is still available at the /album route.

77.2 Setting Up Zend\Navigation

Firstly, we need to tell our application which NavigationFactory to use when using the bundled navigation view
helpers. Thankfully, ZF2 comes with a default factory that will suit our needs just fine. To tell ZF2 to use this default
factory, we simply add a navigation key to the service manager. Its best to do this in the Application module,
because, like the translation data, this is specific to the entire application, and not just to our album pages:

module/Application/config/module.config.php:

273

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

"service_manager’ => array (

" factories’

"navigation’

)y
)y

=> array (

=> ’Zend\Navigation\Service\DefaultNavigationFactory’,

77.3 Configuring our Site Map

// <—-— add this

Next up, we need Zend\Navigation to understand the hierarchy of our site. Thankfully, if we addanavigation
key to our merged config, the navigation factory will automagically create the container and pages needed to use the

view helpers. Let’s do this in the Application module:

module/Application/config/module.config.php:

return array (

"navigation’ => array(
"default’ => array(

array (
"label’ => "Home’,
"route’ => ’'home’,
) 14
array (

"label’ => ’"Album’,
"route’ => ’"album’,
"pages’ => array (

array (
"label’ =>
"route’ =>
"action’ =>
)I
array (
"label’” =>
"route’ =>
"action’ =>
)I
array (
"label’ =>
"route’ =>
"action’ =>

)y

"Add’,
"album’,
"add’,

"Edit’,
"album’,
"edit’,

"Delete’,
"album’,
"delete’

This configuration maps out the pages we’ve defined in our controller, with labels linking to the given route names. You
can define highly complex hierarchical sites here with pages and sub-pages linking to route names, controller/action

pairs or external uris. For more information see the docs here.

274

Chapter 77. Using Zend\Navigation in your Album Module

http://framework.zend.com/manual/2.2/en/modules/zend.navigation.quick-start.html

R B S e

[e Y S P

[Y S

Zend Framework 2 Documentation, Release 2.3.5

77.4 Adding the Menu View Helper

Now that we have the navigation helper configured by our service manager and merged config, we can easily add the
menu to the title bar to our layout by using the menu view helper:

module/Application/view/layout/layout.phtml:

<div class="collapse navbar—-collapse">
<?php // <-- Add this !!
echo $this->navigation(’navigation’)->menu();
2>

</div>

The navigation helper is built in to Zend Framework 2, and uses the service manager configuration we’ve already
defined to configure itself automatically. Refreshing your application you will see a working menu, with just a few
tweaks however, we can make it look awesome:

module/Application/view/layout/layout.phtml:

<div class="collapse navbar-collapse">
<?php // <-— Update this !!
echo S$this->navigation(’navigation’)
—>menu ()
—>setMinDepth (0)
—->setMaxDepth (0)
->setUlClass (' nav navbar-nav’);
2>
</div>

Here we tell the renderer to give the root UL the class of ‘nav’ so that Twitter Bootstrap styles the menu correctly, and
only render the first level of any given page. If you view your application in your browser, you will now see a nicely
styled menu appear in the title bar. The great thing about Zend\Navigation is that it integrates with ZF2’s route
so can tell which page you are currently viewing. Because of this, it sets the active page to have a class of active in
the menu. Twitter Bootstrap uses this to highlight your current page accordingly.

77.5 Adding Breadcrumbs

Adding breadcrumbs is initially just as simple. In our layout .phtml we want to add breadcrumbs above the main
content pane, so our foolish user knows exactly where they are in our complex website. Inside the container div, before
we output the content from the view, let’s add a simple breadcrumb by using the breadcrumbs view helper:

module/Application/view/layout/layout.phtml:

<div class="container">

<?php echo S$this->navigation(’navigation’)->breadcrumbs ()->setMinDepth(0); // <-—- Add this!!

<?php echo Sthis->content; ?>
</div>

This adds a simple but functional breadcrumb to every page (we simply tell it to render from a depth of 0 so we see
all level of pages) but we can do better than that! Because Bootstrap has a styled breadcrumb as part of it’s base
CSS, so let’s add a partial that outputs the UL in bootstrap happy CSS. We’ll create it in the view directory of the
Application module (this partial is application wide, rather than album specific):

module/Application/view/partial/breadcrumb.phtml:

77.4. Adding the Menu View Helper 275

Zend Framework 2 Documentation, Release 2.3.5

<ul class="breadcrumb">
<?php
// iterate through the pages
foreach (Sthis->pages as Skey => Spage):

2>

<?php
// 1f this isn’t the last page, add a link and the separator
if (S$key < count(Sthis->pages) - 1):
?>
<a href="<?php echo Spage->getHref (); ?>"><?php echo Spage->getLabel ();
<?php
// otherwise, just output the name
else:
2>
<?php echo Spage->getLabel (); ?>
<?php endif; ?>
</1li>
<?php endforeach; ?>

Notice how the partial is passed a Zend\View\Model\ViewModel instance with the pages property set to an
array of pages to render. Now all we have to do is tell the breadcrumb helper to use the partial we have just written:

module/Application/view/layout/layout.phtml:

<div class="container">
<?php
echo $this->navigation(’navigation’) // <-- Update this!!
—>breadcrumbs ()
—->setMinDepth (0)
->setPartial ('partial/breadcrumb.phtml’);
2>
<?php echo S$this->content; 2>
</div>

Refreshing the page now gives us a lovely styled set of breadcrumbs on each page.

276 Chapter 77. Using Zend\Navigation in your Album Module

°>

CHAPTER 78

Using Zend\Paginator in your Album Module

In this tutorial we will use the Zend\Paginator component to add a handy pagination controller to the bottom of the
album list.

Currently, we only have a handful of albums to display, so showing everything on one page is not a problem. However,
how will the album list look when we have 100 albums or more in our database? The standard solution to this problem
is to split the data up into a number of pages, and allow the user to navigate around these pages using a pagination
control. Just type “Zend Framework” into Google, and you can see their pagination control at the bottom of the page:

< GR YOQOOOOQOOO(18[{3

>
Previous 1 2 3 4 5 6 7 8 9 10 MNext

78.1 Preparation

In order for us to have lots of albums in our database, you’ll need to run the following SQL insert statement to insert
the current 150 top iTunes albums (at the time of writing!):

INSERT INTO ‘album' (‘artist', ‘title}l)

VALUES
("David Bowie’, ’'The Next Day (Deluxe Version)’),
("Bastille’, ’'Bad Blood’),
("Bruno Mars’, ’'Unorthodox Jukebox’),
("Emeli Sand’, ’'Our Version of Events (Special Edition)’),
("Bon Jovi’, ’'What About Now (Deluxe Version)’),
(" Justin Timberlake’, 'The 20/20 Experience (Deluxe Version)’),
("Bastille’, ’'Bad Blood (The Extended Cut)’),

('nk’, ’"The Truth About Love’),

("Sound City - Real to Reel’, ’Sound City - Real to Reel’),

(

(

(

(

(

(

(

(

4

av]

"Jake Bugg’, ’Jake Bugg’),

"Various Artists’, ’The Trevor Nelson Collection’),

"David Bowie’, ’The Next Day’),

"Mumford & Sons’, ’'Babel’),

"The Lumineers’, ’The Lumineers’),

'Various Artists’, ’'Get Ur Freak On - R&B Anthems’),

"The 1975’, ’'Music For Cars EP’),

'Various Artists’, ’Saturday Night Club Classics - Ministry of Sound’),

277

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

59

60

61

62

64

65

66

67

68

69

70

71

3

74

75

76

77

Zend Framework 2 Documentation, Release 2.3.5

Hurts’, 'Exile (Deluxe)’),

"Various Artists’ "Mixmag — The Greatest Dance Tracks of All Time’),
"Ben Howard’, ’Every Kingdom’),

"Stereophonics’, ’'Graffiti On the Train’),

"The Script’, ’'#37),

"Stornoway’, ’Tales from Terra Firma’),

"David Bowie’, ’'Hunky Dory (Remastered)’),

"Worship Central’, ’'Let It Be Known (Live)’),

"Ellie Goulding’, ’Halcyon’),

"Various Artists’, ’'Dermot O\’Leary Presents the Saturday Sessions 2013'),
" Stereophonics’ "Graffiti On the Train (Deluxe Version)'’),
Dido’ 'Girl Who Got Away (Deluxe)’),

’Hurts’ 'Exile’),

"Bruno Mars’, ’Doo-Wops & Hooligans’),

"Calvin Harrls 718 Months’),

"Olly Murs’, ’nght Place Right Time’),

"Alt-J (?)’, "An Awesome Wave’),

’One Direction’ "Take Me Home’),

’Various Artlsts’ "Pop Stars’),

"Various Artists’, ’'Now That\’s What I Call Music! 83'),
"John Grant’, ’Pale Green Ghosts’),

"Paloma Faith’, ’'Fall to Grace’),

’Laura Mvula’ ’Sing To the Moon (Deluxe)’),

"Duke Dumont’ "Need U (100%) [feat. AxMxE] - EP'),
"Watsky’, ’'Cardboard Castles’),

"Blondie’ "Blondie: Greatest Hits’),

Foals’ ’Holy Fire’),

’Maroon 5", ’"Overexposed’),

"Bastille’ "Pompeii (Remixes) - EP’),
’Various Artlsts’ 7100 Hits: 80s Classics’),
'Various Artists’, ’'Les Misrables (Highlights From the Motion Picture Soundtrack)’),

'Mumford & Sons’ ’Sigh No More’),

"Frank Ocean’, ’Channel ORANGE') ,

"Bon Jovi’ "What About Now’),

’Various Artlsts "BRIT Awards 20137),

Taylor Swift’, ’Red’),

Fleetwood Mac’ 'Fleetwood Mac: Greatest Hits’),
David Guetta’ ’Nothing But the Beat Ultimate’),
"Various Artlsts’ "Clubbers Guide 2013 (Mixed By Danny Howard) - Ministry of Sound’),
"David Bowie’ "Best of Bowie’),

’Laura Mvula’ ’Sing To the Moon’),

"ADELE’, ’21’)

"Of Monsters and Men’, ’'My Head Is an Animal’),

"Rihanna’ ’Unapologetlc’),

"Various Artlsts’ "BBC Radio 1\’s Live Lounge - 2012'),

"Avicii & Nicky Romero’ "I Could Be the One (Avicii wvs. Nicky Romero)’),
"The Streets’ 'A Grand Don\’t Come for Free’),

"Tim McGraw’ ’Two Lanes of Freedom’),

Foo Flghters "Foo Fighters: Greatest Hits’),
’Various Artlsts "Now That\’s What I Call Running!’),
" Swedish House Mafla’ "Until Now'),

"The xx', ’Coexist’),

'Five’, ’Five' Greatest Hits’),

"Jimi Hendrix’ "People, Hell & Angels’),
"Biffy Clyro’ ’Opposites (Deluxe)’),
"The Smiths’ ’The Sound of the Smiths’),

(
(
(
(
(
(
(
(
(
(
(
(’
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(r
(
(
(" Imagine Dragons "Hear Me - EP’),
(
(
(
(
(
(
(
('
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(" The Saturdays 'What About Us - EP’),

278

Chapter 78. Using Zend\Paginator in your Album Module

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Zend Framework 2 Documentation, Release 2.3.5

"Fleetwood Mac’, ’Rumours’),

"Various Artists’, ’'The Big Reunion’),

'Various Artists’, ’'Anthems 90s - Ministry of Sound’),
"The Vaccines’, ’Come of Age’),

"Nicole Scherzinger’, ’'Boomerang (Remixes) - EP'),
"Bob Marley’, ’Legend (Bonus Track Version)’),

"Josh Groban’, ’"All That Echoes’),

"Blue’, ’"Best of Blue’),

"Ed Sheeran’ T+,

"Olly Murs’, ’In Case You Didn\’t Know (Deluxe Edition)’),

"Macklemore & Ryan Lewis’ ’The Heist (Deluxe Edition)’),

'Various Artists’ ’Defected Presents Most Rated Miami 20137),

"Gorgon City’ ’Real EP’),

"Mumford & Sons’, "Babel (Deluxe Version)’),

"Various Artists’, ’'The Music of Nashville: Season 1, Vol. 1 (Original Soundtrack)’),
"Various Artists’, ’'The Twilight Saga: Breaking Dawn, Pt. 2 (Original Motion Picture Soundtrack,
'Various Artists’, 'Mum - The Ultimate Mothers Day Collection’),

"One Direction’, ’'Up All Night’),

"Bon Jovi’ ’Bon Jovi Greatest Hits’),

"Agnetha Fltskog "A"),

"Fun.’, ’Some Nights’),

’Justin Bieber’ "Believe Acoustic’),
"Atoms for Peace "Amok’),

rJustin Tlmberlake "Justified’),

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

("Passenger’, ’'All the Little Lights’),

("Kodaline’, ’'The High Hopes EP'),

(" Lana Del Rey "Born to Die’),

("JAY 7 & Kanye West’, ’'Watch the Throne (Deluxe Version)’),
("Biffy Clyro’, ’Opposites’),
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(’
(
(
(
(
(
(
(
(

’Various Artlsts "Return of the 90s’),

"Gabrielle Aplln’ "Please Don\’'t Say You Love Me - EP’),
"Various Artists’ 7100 Hits - Driving Rock’),

’Jimi Hendrix’ ’Experience Hendrix — The Best of Jimi Hendrix’),

’Various Artlsts’ "The Workout Mix 20137),

"The 1975", ’"Sex’),

’Chase & Status’ "No More Idols’),

"Rihanna’, ’Unapologetic (Deluxe Version)’),

"The Killers’ ’Battle Born’),

"Olly Murs’ ’Right Place Right Time (Deluxe Edition)’),
"ASAP Rocky "LONG.LIVE.ASAP (Deluxe Version)’),
'Various Artists’, ’'Cooking Songs’),

"Haim’ 'Forever - EP’),

’Llanne La Havas’, ’'Is Your Love Big Enough?’),
"Michael Bubl’, ’'To Be Loved’),

"Daughter’, '"If You Leave’),

"The xx’ rxx"),

’Eminem’, ’‘Curtain Call’),

"Kendrick Lamar’, ’good kid, m.A.A.d city (Deluxe)’),
"Disclosure’, ’The Face - EP’),

Palma Violets’ r180"),

"Cody Simpson’ ’Paradise’),

'"Ed Sheeran’, ’+ (Deluxe Version)’),

"Michael Bubl’, ’Crazy Love (Hollywood Edition)’),
"Bon Jovi’ "Bon Jovi Greatest Hits - The Ultimate Collection’),
'Rita Ora’ 'Ora’),

"g33k’, ’Spabby’),

’Various Artists’ "Annie Mac Presents 20127),

David Bowie’, ’The Platinum Collection’),

78.1. Preparation 279

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

20
21
22
23

24

Zend Framework 2 Documentation, Release 2.3.5

("Bridgit Mendler’ "Ready or Not (Remixes) - EP’),
("Dido’, ’'Girl Who Got Away’),

("Various Artists’, ’'Now That\’s What I Call Disney’),
(" The 1975', ’Facedown - EP"),

("Kodaline’ "The Kodaline - EP'),

("Various Artlsts 7100 Hits: Super 70s’),

("Fred V & Grafix’, ’Goggles - EP'),

("Biffy Clyro’ ’Only Revolutions (Deluxe Version)’),
(" Train’ ’Callfornia 37",

(' Ben Howard’ "Every Kingdom (Deluxe Edition)’),
("Various Artists’ "Motown Anthems’),

(" Courteeners’, ’ANNA’),

(" Johnny Marr’, ’'The Messenger’),

("Rodriguez’, ’'Searching for Sugar Man’),

(
(
(

"Jessie Ware’ "Devotion’),
"Bruno Mars’, ’Unorthodox Jukebox’),
’Various Artists’ "Call the Midwife (Music From the TV Series)’

)i

This gives us a handy extra 150 rows to play with. If you now visit your album list at /album, you’ll see a huge long
list of 150+ albums, its ugly.

78.2 Modifying the AlbumTable

In order to let ZF2 handle our database queries automatically for us, we will be using the
Zend\PaginatoNAdapter\DbSelect paginator adapter. This will automatically manipulate and run a
Zend\Db\Sgl\Select object to include the correct LIMIT and WHERE clauses, so that it returns only the
right amount of data needed to display the given page. Let’s modify the fetchAll method of the AlbumTable
model, so that it can optionally return a paginator object:

module/Album/src/Album/Model/AlbumTable.php

<?php
namespace Album\Model;

use Zend\Db\ResultSet\ResultSet;

use Zend\Db\TableGateway\TableGateway;
use Zend\Db\Sgl\Select;

use Zend\Paginator\Adapter\DbSelect;
use Zend\Paginator\Paginator;

class AlbumTable
{

public function fetchAll (Spaginated=false)
{
if (Spaginated) {

// create a new Select object for the table album
Sselect = new Select ("album’);
// create a new result set based on the Album entity
SresultSetPrototype = new ResultSet ();
SresultSetPrototype->setArrayObjectPrototype (new Album());
// create a new pagination adapter object

SpaginatorAdapter = new DbSelect (
// our configured select object
Sselect

280 Chapter 78. Using Zend\Paginator in your Album Module

25

26

27

28

29

30

Zend Framework 2 Documentation, Release 2.3.5

// the adapter to run it against
Sthis->tableGateway->getAdapter (),
// the result set to hydrate
SresultSetPrototype
)i
Spaginator = new Paginator ($SpaginatorAdapter);
return Spaginator;

}
SresultSet = $this->tableGateway->select ();
return SresultSet;

This will return a fully configured Paginator object. We’ve already told the DbSelect adapter to use our created
Select object, to use the adapter that the TableGateway object uses, and also how to hydrate the result into a
Album entity in the same fashion as the TableGateway does. This means that our executed and returned paginator
results will return A1bum objects in exactly the same fashion as the non-paginated results.

78.3 Modifying the AlbumController

Next, we need to tell the album controller to return a Pagination object instead of a ResultSet. Both these
objects can by iterated over to return hydrated A1bum objects, so we won’t need to make many changes to the view
script:

module/Album/src/Album/Controller/AlbumController.php

public function indexAction()

{
// grab the paginator from the AlbumTable
Spaginator = $this->getAlbumTable () ->fetchAll (true);

// set the current page to what has been passed in query string, or to 1 if none set

Spaginator—->setCurrentPageNumber ((int) S$this->params () ->fromQuery (' page’, 1));
// set the number of items per page to 10
Spaginator->setItemCountPerPage (10);

return new ViewModel (array (
"paginator’ => S$paginator

)) i

Here we are getting the configured Paginator object from the AlbumTable, and then telling it to use the page
that is optionally passed in the querystring page parameter. We are also telling the paginator we want to display 10
objects per page.

78.4 Updating the View Script

Now, let’s just tell the view script to iterate over the pagination view variable, rather than the albums variable:
module/Album/view/album/album/index.phtml

<table class="table">
<tr>
<th>Title</th>

78.3. Modifying the AlbumController 281

20

21

22

23

24

25

26

Zend Framework 2 Documentation, Release 2.3.5

<th>Artist</th>
<th> </th>
</tr>
<?php foreach (Sthis->paginator as S$album) : // <-- change here! ?>
<tr>
<td><?php echo S$this->escapeHtml (Salbum->title); ?></td>
<td><?php echo S$this->escapeHtml (Salbum->artist); ?></td>
<td>
<a href="<?php echo S$this->url (’album’,
array (’action’ => ’edit’, ’id’ => Salbum->id)); ?>">Edit
<a href="<?php echo S$this->url (’album’,
array (’action’ => ’delete’, ’id’ => Salbum->id)); ?>">Delete
</td>
</tr>
<?php endforeach; ?>
</table>

Checking the /album route on your website should now give you a list of just 10 albums, but with no method to
navigate through the pages. Let’s correct that now...

78.5 Creating the Pagination Control Partial

Much like we created a custom breadcrumbs partial to render our breadcrumb in the last tutorial, we need to create
a custom pagination control partial to render our pagination control just the way we want it. Again, because we are
using Twitter Bootstrap, this should be as simple as outputting correctly formatted html to get a pretty control. Let’s
create the partial in the module/Application/view/partial/ folder, so that we can use the control in all our
modules:

module/Application/view/partial/paginator.phtml

<?php if (S$this->pageCount): ?>

<diwv>
<ul class="pagination">
<!-- Previous page link —-->
<?php if (isset (S$Sthis->previous)): ?>

<a href="<?php echo S$this->url (Sthis->route); ?>?page=<?php echo S$this->previou:
<<

</1li>

<?php else: ?>
<li class="disabled">

<<

</1li>
<?php endif; ?>

<!—— Numbered page links —-->
<?php foreach ($this->pagesInRange as Spage): ?>
<?php if (Spage != Sthis->current): ?>

<a href="<?php echo Sthis->url(Sthis->route); ?>?page=<?php echo Spage; ?>">
<?php echo Spage; ?>

</1li>

282 Chapter 78. Using Zend\Paginator in your Album Module

39

40

41

42

43

44

45

46

47

48

49

Zend Framework 2 Documentation, Release 2.3.5

<?php else: ?>

<li class="active">

<?php echo Spage; ?>

</1li>
<?php endif; ?>
<?php endforeach; ?>

<!-— Next page link -->
<?php if (isset (Sthis->next)):

<a href="<?php echo
>>

</1li>
<?php else: ?>
<1li class="disabled">

>>

</1li>
<?php endif; 2>

</div>

<?php endif; 2>

Sthis->url (Sthis->route);

?>

All this partial does is to create a pagination control with links to the correct pages (if there is more than one page in
the pagination object). It will render a previous page link (and mark it disabled if you are at the first page), then render
a list of intermediate pages (that are passed to the partial based on the rendering style — we’ll set in the view helper in
the next step). Finally, it will create a next page link (and disable it if you’re at the end). Notice how we pass the page
number via the page querystring parameter which we have already told our controller to use to display the current

page.

78.5. Creating the Pagination Control Partial

283

?>?page=<?php echo S$this->next;

2.

Zend Framework 2 Documentation, Release 2.3.5

284 Chapter 78. Using Zend\Paginator in your Album Module

CHAPTER 79

Using the PaginationControl View Helper

The only thing left for us to do so that we can page through the albums is to use the paginationControl view helper to
display our pagination control. This is nicely straightforward as we have already done all the ground work needed to
display the control:

module/Album/view/album/album/index.phtml

<?php
// add at the end of the file after the table
echo Sthis->paginationControl (
// the paginator object
Sthis->paginator,
// the scrolling style
"sliding’,
// the partial to use to render the control
"partial/paginator.phtml’,
// the route to link to when a user clicks a control link
array (
"route’ => "album’
)
)i

2>

All we need to do here is to echo the paginationControl helper, and tell it to use our paginator object, sliding scrolling
style, our paginator partial, and which route to use for clicks. Refreshing your application should give you a lovely
bootstrap styled pagination control!

285

Zend Framework 2 Documentation, Release 2.3.5

286 Chapter 79. Using the PaginationControl View Helper

CHAPTER 80

Setting up a database adapter

80.1 Introduction

In most cases, e.g. in your controllers, your database adapter can be fetched directly from the service manager. Some
classes however, like Zend\Validator\DbRecordExists isn’t aware of the service manager, but still needs an
adapter to function.

There are many different ways to provide this functionality to your application. Below are a few examples.

80.2 Basic setup

Normally you will setup your database adapter using a factory in the service manager in your configuration. It might
look something like this:

// config/autoload/global.php

return array (
"db’ => array(
"driver’ => ’'Pdo’,
"dsn’ => 'mysqgl:dbname=zf2tutorial;host=localhost’,
) ’
"service_manager’ => array (
"factories’ => array(
" Zend\Db\Adapter\Adapter’ => ’Zend\Db\Adapter\AdapterServiceFactory’,
) 4
)y
)i

The adapter can then be accessed in any ServiceLocatorAware classes.

public function getAdapter ()
{
if (!Sthis->adapter) {
Ssm = $this->getServicelLocator();
Sthis—->adapter = S$sm—>get (' Zend\Db\Adapter\Adapter’) ;
}
return Sthis->adapter;

}

More information on adapter options can be found in the docs for Zend\Db\Adapter.

287

Zend Framework 2 Documentation, Release 2.3.5

80.3 Setting a static adapter

In order to utilize this adapter in non-ServiceLocatorAware classes, you can use
Zend\Db\TableGateway\Feature\GlobalAdapterFeature: :setStaticAdapter() to set a
static adapter:

// config/autoload/global.php

return array (
"db’ => array(

"driver’ => ’'pPdo’,

"dsn’ => "mysqgl:dbname=zf2tutorial;host=localhost’,
),
"service_manager’ => array (

"factories’ => array (
" Zend\Db\Adapter\Adapter’ => function (S$serviceManager) {
SadapterFactory = new Zend\Db\Adapter\AdapterServiceFactory();
Sadapter = SadapterFactory->createService ($serviceManager);

\Zend\Db\TableGateway\Feature\GlobalAdapterFeature: :setStaticAdapter (Sadapter);

return Sadapter;

),
)i

The adapter can then later be fetched using Zend\Db\TableGateway\Feature\GlobalAdapterFeature: :getStaticAd
foruseine.g. Zend\Validator\DbRecordExists:

Svalidator = new Zend\Validator\Db\RecordExists (

array (
"table’ => ’'users’,
"field’ => ’'emailaddress’,

"adapter’ => \Zend\Db\TableGateway\Feature\GlobalAdapterFeature::getStaticAdapter ()

288 Chapter 80. Setting up a database adapter

CHAPTER 81

Migration from Zend Framework 1

This guide is intended to provide tools and strategies for migrating from Zend Framework 1 to Zend Framework 2.
There is no single solution that will work for every project, nor any tools to automate the process.

In this guide, we will cover the following:
* Tools for namespacing your code.
¢ Tools for consuming Zend Framework 2 within your Zend Framework 1 application.
* Strategies for running Zend Framework 2 and Zend Framework 1 in parallel.

* Strategies for making your code easier to migrate, focussing primarily on clean separation of your domain logic
and the MVC layer.

* Strategies for migrating the MVC layer.

* Strategies for migrating your domain layer.

289

Zend Framework 2 Documentation, Release 2.3.5

290 Chapter 81. Migration from Zend Framework 1

CHAPTER 82

Namespacing Old Classes

ZF2’s minimal version is PHP 5.3. The most notable feature of PHP 5.3 is the addition of namespaces, which ZF2 fully
embraces. Moreover, new projects built on ZF2 also fully embrace PHP namespaces. The addition of namespaces to
PHP has greatly improved the readability of long class names and has helped better organize code into modules and
components. This transition has also given birth to some naming best practices that help developers organize their
code bases consisting of classes, components, and modules in a consistent and clean fashion.

Converting an older code base that follows the original PEAR/ZF underscore separated class naming convention into
a properly namespaced codebase is one of the easier strategies to employ in both modernizing your code base as well
as getting ready to ZF2-ify your ZF1 application.

We’ve created a tool to help in this endeavor, it is located here:
https://github.com/zendframework/Namespacer
This tool will take a wholesale approach to converting older code like the following:

class My Long NestedComponent_ClassName

{

// methods that use other classes

}

into:

namespace My\Long\NestedComponent;

use Other\Classes;
use Something\ElseConsumed;

class ClassName

{

// methods with classes converted to short name from use statement.

}

Some IDEs have this capability to some degree. That said, a good approach might be to use the command line
Namespacer to do a full sweep of your codebase, then use the IDE to make more specific naming changes that
might makes more sense to your application.

82.1 Namespacing a ZF1 Application

The above Namespacer is a generalized tool. It does not understand the structure and naming conventions of a ZF1
application. As such, you’ll need to address the problem of converting your classes according to their role, and which
classes you find you can convert without affecting the way the framework interoperates with your code.

291

https://github.com/zendframework/Namespacer

Zend Framework 2 Documentation, Release 2.3.5

For example, in ZF1, the naming convention of application and module layer classes does not directly match up
with same well-defined library class/file conventions of the PEAR/ZF namings. For a standard ZF1 application, in
the application/ directory, controller classes are not prefixed, yet model and form classes are prefixed with
Application_. Moreover, they exist inside of lowercased directories, such as models or forms, and their file
to class name segment matching picks up only after the first segment. As an example, you might have this directory
structure with the class names on the right:

application/
—— Bootstrap.php
—-— configs
| —— application.ini
| —— application.ini.dist
—— controllers
| —— IndexController.php [class IndexController]
| —— PurchaseOrderController.php [class PurchaseOrderController]
—-— forms
| —— PurchaseOrder
| —-— Payment .php [class Application_Form PurchaseOrder_Payment]
—-— layouts
| —— scripts
| -— main.phtml
| —-— subpage.phtml

—— models
| —— DbTable
| | == Invoice.php [Application_Model_DbTable_Invoice]
| == Invoice.php [Application_Model_Invoice]
| —— InvoiceRepository.php [Application_Model_InvoiceRepository]
| —— Payment
| | —— Paypal
[—-— DirectPayment.php [Application_Model_Payment_Paypal_ DirectPayment]
| —— PurchaseOrder.php [Application_Model_PurchaseOrder]
-— views

-— scripts

-— error

| —— error.phtml
-— index
| —— index.phtml
—— purchase-order
—— index.phtml
—— purchaser.phtml

It would not be a good strategy to attempt to do a wholesale namespacing of this kind of project for a number of
reasons:

1. ZF1 has special, context-aware autoloaders that will assist loading a class of a particular context from a special
location on disk. For example, ZF1 understands controllers will be located in the controllers directory and
will not be prefixed unless they are inside of a named module’s controllers directory.

2. Attempting to apply namespacing to controller classes would generally render a ZF1 application useless. ZF1,
beyond loading files from disk, assumes controllers will have a very specific naming convention so that they can
be invoked by the framework upon routing and dispatching.

3. Beyond dispatching, ZF1 uses the class name to identify and map the proper view script to automatically execute.
By naming the controller something non-standard, views will no longer this this 1:1 mapping of controllers by
name to controller action named view scripts.

A better solution would be to start by namespacing the parts of your ZF1 application that have fewer tie-ins with the
ZF1 architecture. The place to start with this is models and forms.

Since models and forms do not touch controller and view classes (which make heavy use of ZF1 classes by way of

292 Chapter 82. Namespacing Old Classes

Zend Framework 2 Documentation, Release 2.3.5

inheritance), model and form classes might not have the same level of coupling.

82.2 HOWTO Namespace Your Models

First, ensure your classes are under version control. The namespacer tool will make modification to classes in place.
You can then use your version control system as a diffing utility afterwards .

To run the tool, download the phar. Optionally you can place the namespacer.phar into a directory in your PATH.
Namespacing is a 2 part process:

1. Create a map of all the old files, new files, old classes and new classes.

2. Make the transformations according to the map file.
Change into your models/ directory and execute the map function:

namespacer.phar map ——mapfile model-map.php —--source models/

This will produce a file called model-map . php with entries like this:

<?php return array (
array (
"root_directory’ => ’/realpath/to/project/application/models’,
"original_class’ => ’'Application_Model_ Invoice’,
"original_file’ => ' /realpath/to/project/application/models/Invoice.php’,
"new_namespace’ => ’'Application\\Model’,
"new_class’ => ’Invoice’,
"new_file’ => ' /realpath/to/project/application/models/Application/Model/Invoice.php’,
) 14

)i

This gives you an opportunity to manually edit the transformations if you so desire. While you can modify this file,
you also might find it to be easier to go with the default transformations, and do the remaining changes with your
IDE’s refactoring utility.

Once you are happy with the map file, run the transformations:

namespacer.phar transform --mapfile model-map.php

At this point, you can use your version control system’s status command to see how the directory has transformed.
As an example, in a sample project of mine, git reports the following:

renamed: models/DbTable/Invoice.php —-> models/Application/Model/DbTable/Invoice.php

new file: models/Application/Model/DbTable/Transaction.php

renamed: models/Invoice.php —-> models/Application/Model/Invoice.php

renamed: models/Payment/Paypal/DirectPayment.php —> models/Application/Model/Payment/Paypal/DirectP:
renamed: models/PurchaseOrder.php —-> models/Application/Model/PurchaseOrder.php

renamed: models/PurchaseOrderRepository.php —> models/Application/Model/PurchaseOrderRepository.php
new file: models/Application/Model/PurchaseOrderService.php

renamed: models/Purchaser.php —-> models/Application/Model/Purchaser.php

renamed: models/Ticket.php —> models/Application/Model/Ticket.php

renamed: models/Transaction.php -> models/Application/Model/Transaction.php

renamed: models/TransactionRepository.php —> models/Application/Model/TransactionRepository.php
deleted: models/DbTable/Transaction.php

deleted: models/PurchaseOrderService.php

82.2. HOWTO Namespace Your Models 293

Zend Framework 2 Documentation, Release 2.3.5

You’ll notice that the resulting files have treated the models/ directory as the autoloader root directory. That means
that from this root, class files follow the strict PEAR/ZF?2 classfile naming convention. The contents of one of the files
will look like this:

namespace Application\Model;

use Application\Model\PurchaseOrder;
use Application\Model\Transaction;
use Zend_Filter_Alnum;

class Invoice

{

protected Sti
protected St

}

Things to notice here:
* A namespace has been created for this class.
* The namespacer has created PHP use statements for classes known in the map file.
* Unknown classes are also included (for example, Zend classes) in use statements.

By keeping the old ZF1 classes, your models should continue to work if they consume ZF1 classes. This will allow
you to, at your own pace, transition your codebase to ZF2.

This same procedure can largely be adapted to forms and independent library code as well.

294 Chapter 82. Namespacing Old Classes

[Y S O

CHAPTER 83

Running Zend Framework 2 and Zend Framework 1 in parallel

From a technical point of view it is absolutely possible to run ZF2 in parallel with ZF1 because there is no conflict
between the classnames due to the fact that ZF2 uses namespaces and ZF1 does not. Running ZF1 and ZF2 in
parallel can be used as a migration strategy in projects where it is not possible, or not convenient, to migrate an entire
application from ZF1 to ZF2. For instance, you could implement any new features of the application using ZF2, while
maintaining original ZF1 features.

Let’s examine some scenarios on how to execute ZF1 and ZF2 together.

83.1 Use ZF2 in a ZF1 project

Suppose we have an existing ZF1 application and we want to start using ZF2; how could we do that?

Because ZF2 uses namespaced classes, you can run it in parallel with ZF1 without naming conflicts. In order to do
this, you will need to add some code to autoload ZF2 from within your ZF1 project. Add these lines of code in your
public/index.php, before the instantiation of $application:

define (' ZF2_PATH’, ' /path/to/zf2/library’);
require_once ZF2_PATH . ’/Zend/Loader/StandardAutoloader.php’;

Sloader = new Zend\Loader\StandardAutoloader (array (
"autoregister_zf’ => true,

)) i

Sloader->register();

We used the StandardAutoloader class from ZF2. Using this autoloader, classes with the initial namespace
Zend will be loaded using the ZF2_PATH, and any ZF1 classes will continue to be loaded via the mechanisms
present in ZF1.

Of course, this is not a real integration of ZF2 inside ZF1; it only provides the ability to consume ZF2 classes within
your ZF1 application. For instance, you cannot use the MVC architecture of ZF2 because you are using the MVC of
ZF1.

Evan Coury, a member of the ZF community review team, has produced a nice module for ZF1 (zf-2-for-1) that allows
you to use ZF2 features inside an existing ZF1 application. This module offers some basic integrations like the usage
of ZF2 view helpers in the ZF1 view layer (i.e. $this->zf2->get (' formRow’)).

83.2 Use ZF1 in a ZF2 project

You can add ZF1 to your ZF2 application via Composer by adding the “zendframework/zendframework1” package as
a requirement.

295

https://github.com/EvanDotPro/zf-2-for-1

L S

L e Y T S e

Zend Framework 2 Documentation, Release 2.3.5

For instance, if you have a ZF2 application and you want to install ZF 1.12, you need to add the following line in the
require section of your composer. json file:

"require": {
"php": ">=5.3.23",
"zendframework/zendframeworkl": "1.12",

}

After executing composer.phar update, you can start to use ZF1 classes in your ZF2 project. Since all ZF1
classes exist in the global namespace, you will need to refer to them by their full name; as examples, Zend_Date,
Zend_Feed_Reader, etc.

For other strategies on how to use ZF1 in a ZF2 project, you can check out this blog post by Abdul Malik Ikhsan, Zend
Framework 2 : Using Zend Framework 1 libraries.

83.3 Run ZF1 and ZF2 together

As we mentioned early, one way to migrate a ZF1 application to ZF2 can be to execute in parallel the different
versions of the framework, using ZF2 for the new features, and migrating the ZF1 code step by step. In order to
execute in parallel, we need to map different URLSs to the different front controllers for ZF1 and ZF2. This goal can be
accomplished using the rewriting rules of your web server. From a performance point of view, this is the best solution
because it does not involve pre-processing overhead. For each URL we can define a different version of the framework
to be used.

For instance, imagine we have a ZF1 application and we want to use ZF2 only for URLs starting with /album. We
can use the following . ht access file (this information is related to apache; if you are using another web server, read
the instructions in the note below):

SetEnv APPLICATION_ENV development
RewriteEngine On

RewriteCond ${REQUEST_FILENAME} -s [OR]
RewriteCond %{REQUEST_FILENAME} -1 [OR]
RewriteCond %${REQUEST_FILENAME} -d
RewriteRule ~ - [NC, L]

RewriteRule "album(/.x)?$ index_zf2.php [NC,L]
RewriteRule »~ index.php [NC,L]

index_zf2.php is a PHP script that includes as the typical public/index.php file of ZF2. Here is the source
code for index_zf2.php:

require_once ’../path-to-ZF2-app/public/index.php’;

We suggest putting the ZF2 application in a separate folder under the same root directory of the ZF1 application. In
this way you can continue to maintain the existing ZF1 code and use ZF2 only for the new features. Moreover, if you
want to migrate the old code you can do that by URL and switch to the new ZF2 code only when you are ready. This
approach can be useful to provide migration guideline without losing development time in a full stack migration.

Note: All web servers support a rewriting mechanism. For instance, if you are using Microsoft IIS 7, you can check
how to configure the rewriting rules from Rob Allen’s post Zend Framework URL Rewriting in IIS7; if you are using

nginx, you can check out this StackOverflow question: Zend Framework on nginx.

296 Chapter 83. Running Zend Framework 2 and Zend Framework 1 in parallel

http://samsonasik.wordpress.com/2012/12/04/zend-framework-2-using-zend-framework-1-libraries-in-zend-framework-2/
http://samsonasik.wordpress.com/2012/12/04/zend-framework-2-using-zend-framework-1-libraries-in-zend-framework-2/
http://httpd.apache.org/
http://www.iis.net/
http://akrabat.com/winphp-challenge/zend-framework-url-rewriting-in-iis7/
http://nginx.org/
http://stackoverflow.com/questions/376732/zend-framework-on-nginx

CHAPTER 84

Introduction to Zend\Authentication

The Zend\Authentication component provides an API for authentication and includes concrete authentication
adapters for common use case scenarios.

Zend\Authentication is concerned only with authentication and not with authorization. Authentication is
loosely defined as determining whether an entity actually is what it purports to be (i.e., identification), based on some
set of credentials. Authorization, the process of deciding whether to allow an entity access to, or to perform operations
upon, other entities is outside the scope of Zend\Authentication. For more information about authorization and
access control with Zend Framework, please see the Zend\Permissions\Acl or Zend\Permissions\Rbac component.

Note: There is no Zend\Authentication\Authentication class, instead the class
Zend\Authentication\AuthenticationService is provided. This class uses underlying authenti-

cation adapters and persistent storage backends.

84.1 Adapters

Zend\Authentication adapters are used to authenticate against a particular type of authentication service, such
as LDAP, RDBMS, or file-based storage. Different adapters are likely to have vastly different options and behaviors,
but some basic things are common among authentication adapters. For example, accepting authentication creden-
tials (including a purported identity), performing queries against the authentication service, and returning results are
common to Zend\Authentication adapters.

Each Zend\Authentication adapter class implements Zend\Authentication\Adapter\AdapterInterface.
This interface defines one method, authenticate (), that an adapter class must implement for performing an
authentication query. Each adapter class must be prepared prior to calling authenticate (). Such adapter
preparation includes setting up credentials (e.g., username and password) and defining values for adapter-specific
configuration options, such as database connection settings for a database table adapter.

The following is an example authentication adapter that requires a username and password to be set for authentication.
Other details, such as how the authentication service is queried, have been omitted for brevity:

use Zend\Authentication\Adapter\AdapterInterface;

class My\Auth\Adapter implements AdapterInterface
{
/% *
* Sets username and password for authentication
*
* @return void

*/

297

Zend Framework 2 Documentation, Release 2.3.5

public function __ construct (Susername, S$password)
{
//

VAT
* Performs an authentication attempt

*
* @return \Zend\Authentication\Result
* @throws \Zend\Authentication\Adapter\Exception\ExceptionInterface
* If authentication cannot be performed
*/
public function authenticate()
{
//

}

As indicated in its docblock, authenticate () must return an instance of Zend\Authentication\Result
(or of a class derived from Zend\Authentication\Result). If for some reason performing
an authentication query is impossible, authenticate () should throw an exception that derives from
Zend\Authentication\Adapter\Exception\ExceptionInterface.

84.2 Results

Zend\Authentication adapters return an instance of Zend\Authentication\Result with
authenticate () in order to represent the results of an authentication attempt. Adapters populate the
Zend\Authentication\Result object upon construction, so that the following four methods provide a basic
set of user-facing operations that are common to the results of Zend\Authentication adapters:

* isValid () - returns TRUE if and only if the result represents a successful authentication attempt

* getCode () - returns a Zend\Authentication\Result constant identifier for determining the type of
authentication failure or whether success has occurred. This may be used in situations where the developer
wishes to distinguish among several authentication result types. This allows developers to maintain detailed au-
thentication result statistics, for example. Another use of this feature is to provide specific, customized messages
to users for usability reasons, though developers are encouraged to consider the risks of providing such detailed
reasons to users, instead of a general authentication failure message. For more information, see the notes below.

* getIdentity ()- returns the identity of the authentication attempt
* getMessages () - returns an array of messages regarding a failed authentication attempt

A developer may wish to branch based on the type of authentication result in order to perform more specific op-
erations. Some operations developers might find useful are locking accounts after too many unsuccessful password
attempts, flagging an IP address after too many nonexistent identities are attempted, and providing specific, customized
authentication result messages to the user. The following result codes are available:

use Zend\Authentication\Result;

Result: :SUCCESS

Result: :FATLURE
Result::FAILURE_IDENTITY_NOT_FOUND
Result::FAILURE_IDENTITY_AMBIGUOUS
Result: :FAILURE_CREDENTIAL_INVALID
Result::FAILURE_UNCATEGORIZED

298 Chapter 84. Introduction to Zend\Authentication

Zend Framework 2 Documentation, Release 2.3.5

The following example illustrates how a developer may branch on the result code:

// inside of AuthController / loginAction
Sresult = S$this->auth->authenticate($adapter);

switch (Sresult->getCode()) {

case Result::FAILURE_IDENTITY_NOT_FOUND:
/++ do stuff for nonexistent identity x*/
break;

case Result::FAILURE_CREDENTIAL_INVALID:
/#**x do stuff for invalid credential #*#*/
break;

case Result::SUCCESS:
/#*+ do stuff for successful authentication *x/
break;

default:

/*% do stuff for other failure x*x/
break;

84.3 Identity Persistence

Authenticating a request that includes authentication credentials is useful per se, but it is also important to support
maintaining the authenticated identity without having to present the authentication credentials with each request.

HTTP is a stateless protocol, however, and techniques such as cookies and sessions have been developed in order to
facilitate maintaining state across multiple requests in server-side web applications.

84.3.1 Default Persistence in the PHP Session

By default, Zend\Authentication provides persistent storage of the identity from a suc-

cessful authentication attempt using the PHP session. Upon a successful authentication at-
tempt, Zend\Authentication\AuthenticationService::authenticate () stores
the identity from the authentication result into persistent storage. Unless specified other-
wise, Zend\Authentication\AuthenticationService uses a storage class named

Zend\Authentication\Storage\Session, which, in turn, uses Zend\Session. A custom class may instead
be used by providing an object that implements Zend\Authentication\Storage\StorageInterface to
Zend\Authentication\AuthenticationService: :setStorage ().

Note: If automatic persistent storage of the identity is not appropriate for a particular use case, then developers
may forget using the Zend\Authentication\AuthenticationService class altogether, instead using an

adapter class directly.

Modifying the Session Namespace

Zend\Authentication\Storage\Session uses a session namespace of ‘Zend_Auth®.
This namespace may be overridden by passing a different value to the constructor of
Zend\Authentication\Storage\Session, and this value is internally passed along to the

84.3. Identity Persistence 299

Zend Framework 2 Documentation, Release 2.3.5

constructor of Zend\Session\Container. This should occur before authentication is attempted, since
Zend\Authentication\AuthenticationService::authenticate () performs the automatic
storage of the identity.

use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Storage\Session as SessionStorage;

Sauth = new AuthenticationService();

// Use ’someNamespace’ instead of ’Zend Auth’
Sauth->setStorage (new SessionStorage (' someNamespace’));

VEE:
* @todo Set up the auth adapter, SauthAdapter
*/

// Authenticate, saving the result, and persisting the identity on

// success
Sresult = Sauth->authenticate (SauthAdapter);

84.3.2 Chain Storage

A website may have multiple storage in place. The Chain Storage can be used to glue these together.

The Chain can for example be configured to first use a Session Storage and then use a OAuth as a secondary
Storage. One could configure this in the following way:

Sstorage = new Chain;
Ssto —->add (new Session);
1ge—>add (new OAuth); // Note: imaginary storage, not part of ZF2

Ssto

Now if the Chain Storage is accessed its underlying Storage will get accessed in the order in which they were added
to the chain. Thus first the Session Storage is used. Now either:
* The Session Storage is non-empty and the Chain will use its contents.
* The Session Storage is empty. Next the OAuth Storage is accessed.
— If this one is also empty the Chain will act as empty.

— If this one is non-empty the Chain will use its contents. However it will also populate all Storage with
higher priority. Thus the Session Storage will be populated with the contents of the Oauth Storage.

The priority of Storage in the Chain can be made explicit via the Chain: : add method.

Schain->add (new A, 2);
rin->add (new B, 10); // First use B

84.3.3 Implementing Customized Storage

Sometimes developers may need to use a different identity storage mechanism than that provided
by Zend\Authentication\Storage\Session. For such cases developers may simply imple-
ment Zend\Authentication\Storage\StorageInterface and supply an instance of the class to
Zend\Authentication\AuthenticationService: :setStorage ().

300 Chapter 84. Introduction to Zend\Authentication

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Zend Framework 2 Documentation, Release 2.3.5

Using a Custom Storage Class

In order to use an identity persistence storage class other than Zend\Authentication\Storage\Session, a
developer implements Zend\Authentication\Storage\StorageInterface:

use Zend\Authentication\Storage\StorageInterface;

class My\Storage implements StoragelInterface

{

/ x*
* Returns true if and only if storage is empty
*
* @throws \Zend\Authentication\Exception\ExceptionInterface
* If it is impossible to
* determine whether storage 1s empty
* @return boolean
*/
public function isEmpty ()
{
J*k
* @todo implementation

*/

J kk
* Returns the contents of storage

Behavior is undefined when storage is empty.

* @throws \Zend\Authentication\Exception\ExceptionInterface
* If reading contents from storage 1s impossible
* @return mixed

*/

public function read()
{
Ve
* @todo implementation

*/

J ok k
* Writes Scontents to storage
*
* @param mixed Scontents
* @throws \Zend\Authentication\Exception\ExceptionInterface
* If writing Scontents to storage is impossible
* @return void

*/

public function write ($Scontents)

{
/%
* @todo implementation

*/

VAT

84.3. Identity Persistence

301

54

56

57

59

60

61

62

63

64

65

66

67

Zend Framework 2 Documentation, Release 2.3.5

* Clears contents from storage

*

* @throws \Zend\Authentication\Exception\ExceptionInterface

* If clearing contents from storage is impossible
* @return void

*/

public function clear()
{
J ok ok
* @todo Iimplementation

*/

In order to use this custom storage class, Zend\Authentication\AuthenticationService: :setStorage ()

is invoked before an authentication query is attempted:

use Zend\Authentication\AuthenticationService;

// Instruct AuthenticationService to use the custom storage class

Sauth = new AuthenticationService();
Sauth->setStorage (new My\Storage());
J ko
* @todo Set up the auth adapter, SauthAdapter
*/

// Authenticate, saving the result, and persisting the identity on
// success
Sresult = Sauth->authenticate ($SauthAdapter);

84.4 Usage

There are two provided ways to use Zend\Authentication adapters:
* indirectly, through Zend\Authentication\AuthenticationService::authenticate ()
* directly, through the adapter’s authenticate () method

The following example illustrates how to use a Zend\Authent ication adapter indirectly, through the use of the
Zend\Authentication\AuthenticationService class:

use Zend\Authentication\AuthenticationService;

// instantiate the authentication service
Sauth = new AuthenticationService();

// Set up the authentication adapter
SauthAdapter = new My\Auth\Adapter (Susername,

n

as

U

sword) ;

ol

// Attempt authentication, saving the result
Sresult = Sauth->authenticate ($SauthAdapter);

if (!Sresult->isvalid()) {
// Authentication failed; print the reasons why

302 Chapter 84. Introduction to Zend\Authentication

Zend Framework 2 Documentation, Release 2.3.5

foreach (Sresult->getMessages () as Smessage) {
echo "] n"

}
} else {
// Authentication succeeded; the identity (Susername) 1is stored
// in the session
// Sresult->getIdentity () === Sauth->getIdentity/()
==

)
// Sresult->getIdentity() = username

Once authentication has been attempted in a request, as in the above example, it is a simple matter to check whether a
successfully authenticated identity exists:

use Zend\Authentication\AuthenticationService;

Sauth = new AuthenticationService();

/ x
* @todo Set up the auth adapter, SauthAdapter
*/

if (Sauth->hasIdentity()) {
// Identity exists; get it
Sidentity = Sauth->getIdentity();

To remove an identity from persistent storage, simply use the clearIdentity () method. This typically would be
used for implementing an application “logout” operation:

Sauth->clearIdentity () ;

When the automatic use of persistent storage is inappropriate for a particular use case, a developer may simply
bypass the use of the Zend\Authentication\AuthenticationService class, using an adapter class di-
rectly. Direct use of an adapter class involves configuring and preparing an adapter object and then calling its
authenticate () method. Adapter-specific details are discussed in the documentation for each adapter. The
following example directly utilizes My \Auth\Adapter:

// Set up the authentication adapter
SauthAdapter = new My\Auth\Adapter (Susername, S$password);

// Attempt authentication, saving the result
Sresult = SauthAdapter->authenticate();

if (!Sresult->isvalid()) {
// Authentication failed; print the reasons why
foreach (Sresult->getMessages () as Smessage) {

\ A

echo "Smessage\n";

}
} else {
// Authentication succeeded
// Sresult->getIdentity () === Susername

84.4. Usage 303

Zend Framework 2 Documentation, Release 2.3.5

304 Chapter 84. Introduction to Zend\Authentication

CHAPTER 85

Database Table Authentication

Note: Zend\Authentication\Adapter\DbTable has been deprecated, as its responsibili-
ties have been splitted off into Zend\Authentication\Adapter\DbTable\CallbackCheck

and Zend\Authentication\Adapter\DbTable\CredentialTreatmentAdapter. Use
Zend\Authentication\Adapter\DbTable\CredentialTreatmentAdapter instead of
Zend\Authentication\Adapter\DbTable.

85.1 Introduction

Zend\Authentication\Adapter\DbTable provides the ability to authenticate against credentials stored
in a database table. Because Zend\Authentication\Adapter\DbTable requires an instance of
Zend\Db\Adapter\Adapter to be passed to its constructor, each instance is bound to a particular database
connection. Other configuration options may be set through the constructor and through instance methods, one for
each option.

The available configuration options include:

 tableName: This is the name of the database table that contains the authentication credentials, and against
which the database authentication query is performed.

¢ identityColumn: This is the name of the database table column used to represent the identity. The identity
column must contain unique values, such as a username or e-mail address.

* credentialColumn: This is the name of the database table column used to represent the credential. Under a
simple identity and password authentication scheme, the credential value corresponds to the password. See also
the credentialTreatment option.

* credentialTreatment: In many cases, passwords and other sensitive data are encrypted, hashed, encoded, ob-
scured, salted or otherwise treated through some function or algorithm. By specifying a parameterized treatment
string with this method, such as ‘MD5 (?) ‘ or ‘PASSWORD (?) , a developer may apply such arbitrary SOL upon
input credential data. Since these functions are specific to the underlying RDBMS, check the database manual
for the availability of such functions for your database system.

85.2 Basic Usage

As explained in the introduction, the Zend\Authentication\Adapter\DbTable constructor requires an in-
stance of Zend\Db\Adapter\Adapter that serves as the database connection to which the authentication adapter
instance is bound. First, the database connection should be created.

305

20

21

22

23

24

Zend Framework 2 Documentation, Release 2.3.5

The following code creates an adapter for an in-memory database, creates a simple table schema, and inserts a row
against which we can perform an authentication query later. This example requires the PDO SQLite extension to be
available:

use Zend\Db\Adapter\Adapter as DbAdapter;

// Create a SQLite database connection
SdbAdapter = new DbAdapter (array (
"driver’ => ’'Pdo_Sqglite’,
"database’ => ’'path/to/sglite.db’
)) i

// Build a simple table creation query
$sqglCreate = 'CREATE TABLE [users] ('
" [id] INTEGER NOT NULL PRIMARY KEY, '
" [lusername] VARCHAR (50) UNIQUE NOT NULL, '
" [password] VARCHAR(32) NULL, '
" [real_name] VARCHAR (150) NULL)’;

// Create the authentication credentials table
SdbAdapter->query ($SsglCreate) ;

// Build a query to insert a row for which authentication may succeed
$sglInsert = "INSERT INTO users (username, password, real_name) "
"VALUES (’'my_username’, ’'my_password’, "My Real Name’)";

// Insert the data
SdbAdapter->query ($sgllnsert);

With the database connection and table data available, an instance of
Zend\Authentication\Adapter\DbTable may be created. Configuration option values may be passed to
the constructor or deferred as parameters to setter methods after instantiation:

use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// Configure the instance with constructor parameters...
SauthAdapter = new AuthAdapter (SdbAdapter,

"users’,

"username’ ,

"password’

)i

// ...or configure the instance with setter methods
SauthAdapter = new AuthAdapter (SdbAdapter);

SauthAdapter
->setTableName (' users’)
->setIdentityColumn (’ username’)
—->setCredentialColumn (' password’)

At this point, the authentication adapter instance is ready to accept authentication queries. In order to formulate an
authentication query, the input credential values are passed to the adapter prior to calling the authenticate ()
method:

// Set the input credential values (e.g., from a login form)
$authAdapter

->setIdentity ('my_username’)

—>setCredential ('my_password’)

306 Chapter 85. Database Table Authentication

20

21

22

23

24

25

26

27

Zend Framework 2 Documentation, Release 2.3.5

// Perform the authentication query, saving the result

In addition to the availability of the getIdentity () method upon the authentication result object,
Zend\Authentication\Adapter\DbTable also supports retrieving the table row upon authentication suc-
cess:

// Print the identity
echo Sresult->getIdentity() . "\n\n";

// Print the result row
print_r (SauthAdapter—->getResultRowObject ()) ;

/* Output:
my_username

Array
(
[id] => 1
[username] => my_username
[password] => my_password
[real_name] => My Real Name
)
*/

Since the table row contains the credential value, it is important to secure the values against unintended access.
When retrieving the result object, we can either specify what columns to return, or what columns to omit:

ScolumnsToReturn = array (
rid’, ’'username’, ’'real_name’
)i

print_r (SauthAdapter->getResultRowObject ($ScolumnsToReturn)) ;
/* Output:

Array
(
[id] => 1
[username] => my_username
[real_name] => My Real Name
)
*/

ScolumnsToOmit = array(’'password’);
print_r (SauthAdapter->getResultRowObject (null, S$ScolumnsToOmit);

/* Output:

Array

(
[id] => 1
[username] => my_username
[real _name] => My Real Name

*/

85.2. Basic Usage 307

23

24

25

26

Zend Framework 2 Documentation, Release 2.3.5

85.3 Advanced Usage: Persisting a DbTable Result Object

By default, Zend\Authentication\Adapter\DbTable returns the identity supplied back to the auth object
upon successful authentication. Another use case scenario, where developers want to store to the persistent storage
mechanism of Zend\Authentication an identity object containing other useful information, is solved by using
the getResultRowObject () method to return a stdClass object. The following code snippet illustrates its use:

// authenticate with Zend\Authentication\Adapter\DbTable
Sresult = $this->_auth->authenticate ($Sadapter);

if (Sresult->isValid()) {
// store the identity as an object where only the username and
// real_name have been returned
Sstorage = S$this->_auth->getStorage();
Sstorage->write ($adapter—->getResultRowObject (array (
"username’,
"real_name’,

1))

// store the identity as an object where the password column has

// been omitted
Sstorage->write ($adapter->getResultRowObject (

null,
"password’
))i
VA V4
} else {
V2 Y4

85.3.1 Advanced Usage By Example

While the primary purpose of the Zend\Authentication component (and consequently
Zend\Authentication\Adapter\DbTable) is primarily authentication and not authorization, there
are a few instances and problems that toe the line between which domain they fit within. Depending on how you’ve
decided to explain your problem, it sometimes makes sense to solve what could look like an authorization problem
within the authentication adapter.

With that disclaimer out of the way, Zend\Authentication\Adapter\DbTable has some built in mecha-
nisms that can be leveraged for additional checks at authentication time to solve some common user problems.

use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// The status field value of an account is not equal to "compromised"
Sadapter = new AuthAdapter (Sdb,

"users’,

"username’,

'password’,
"MD5 (?) AND status != "compromised"’

)i

// The active field value of an account is equal to "TRUE"

308 Chapter 85. Database Table Authentication

Zend Framework 2 Documentation, Release 2.3.5

Sadapter = new AuthAdapter (Sdb,

"users’,

"username’,

"password’,

"MD5(?) AND active = "TRUE"'
)

Another scenario can be the implementation of a salting mechanism. Salting is a term referring to a technique which
can highly improve your application’s security. It’s based on the idea that concatenating a random string to every
password makes it impossible to accomplish a successful brute force attack on the database using pre-computed hash
values from a dictionary.

Therefore, we need to modify our table to store our salt string:

$SsglAlter = "ALTER TABLE [users] "
"ADD COLUMN [password_salt] "
"AFTER [password]";

Here’s a simple way to generate a salt string for every user at registration:

SdynamicSalt = ’’;
for (Si = 0; S$Si < 50; Si++) {
SdynamicSalt .= chr(rand (33, 126));

}

And now let’s build the adapter:

Sadapter = new AuthAdapter (Sdb,
"users’,
"username’,
"password’,
"MD5 (CONCAT (' staticSalt’, 7?, password_salt))"
)

Note: You can improve security even more by using a static salt value hard coded into your application. In the case
that your database is compromised (e. g. by an SQL injection attack) but your web server is intact your data is still

unusable for the attacker.

Another alternative is to use the get DbSelect () method of the Zend\Authentication\Adapter\DbTable
after the adapter has been constructed. This method will return the Zend\Db\Sgl\Select object instance it will
use to complete the authenticate () routine. It is important to note that this method will always return the same
object regardless if authenticate () has been called or not. This object will not have any of the identity or
credential information in it as those values are placed into the select object at authenticate () time.

An example of a situation where one might want to use the getDbSelect () method would check the status of a
user, in other words to see if that user’s account is enabled.

// Continuing with the example from above
Sadapter = new AuthAdapter (Sdb,
"users’,
"username’ ,
"password’,
"MD5 (?)’
)i

// get select object (by reference)
>lect = Sadapter->getDbSelect () ;
select->where ('active = "TRUE"');

85.3. Advanced Usage: Persisting a DbTable Result Object 309

Zend Framework 2 Documentation, Release 2.3.5

12
3 // authenticate, this ensures that users.active = TRUE
14 $adapter—->authenticate();

310 Chapter 85. Database Table Authentication

CHAPTER 86

Digest Authentication

86.1 Introduction

Digest authentication is a method of HTTP authentication that improves upon Basic authentication by providing a way
to authenticate without having to transmit the password in clear text across the network.

This adapter allows authentication against text files containing lines having the basic elements of Digest authentication:
¢ username, such as “joe.user
e realm, such as “Administrative Area“
* MD?5 hash of the username, realm, and password, separated by colons

The above elements are separated by colons, as in the following example (in which the password is “somePassword”):

someUser:Some Realm:fdel7b91c3a510ecbaf7dbd37£59d4£8

86.2 Specifics

The digest authentication adapter, Zend\Authentication\Adapter\Digest, requires several input parame-
ters:

* filename - Filename against which authentication queries are performed
* realm - Digest authentication realm

 username - Digest authentication user

* password - Password for the user of the realm

These parameters must be set prior to calling authenticate ().

86.3 Identity

The digest authentication adapter returns a Zend\Authentication\Result object, which has been populated
with the identity as an array having keys of realm and username. The respective array values associated with these
keys correspond to the values set before authenticate () is called.

311

http://en.wikipedia.org/wiki/Digest_access_authentication
http://en.wikipedia.org/wiki/Basic_authentication_scheme

Zend Framework 2 Documentation, Release 2.3.5

use Zend\Authentication\Adapter\Digest as AuthAdapter;

Sadapter = new AuthAdapter ($filename,
Srealm,

Susername,

Spassword) ;
Sresult = $adapter->authenticate();
Sidentity = Sresult->getIdentity();

print_r($Sidentity);

J/ *
Array
(
[realm] => Some Realm
[username] => someUser
)
*/

312

Chapter 86. Digest Authentication

CHAPTER 87

HTTP Authentication Adapter

87.1 Introduction

Zend\Authentication\Adapter\Http provides a mostly-compliant implementation of RFC-2617, Basic and
Digest HTTP Authentication. Digest authentication is a method of HTTP authentication that improves upon Basic
authentication by providing a way to authenticate without having to transmit the password in clear text across the
network.

Major Features:
 Supports both Basic and Digest authentication.
* Issues challenges in all supported schemes, so client can respond with any scheme it supports.
* Supports proxy authentication.

¢ Includes support for authenticating against text files and provides an interface for authenticating against other
sources, such as databases.

There are a few notable features of RFC-2617 that are not implemented yet:
* Nonce tracking, which would allow for “stale” support, and increased replay attack protection.
» Authentication with integrity checking, or “auth-int”.

¢ Authentication-Info HTTP header.

87.2 Design Overview

This adapter consists of two sub-components, the HTTP authentication class itself, and the so-called “Resolvers.”
The HTTP authentication class encapsulates the logic for carrying out both Basic and Digest authentication. It uses
a Resolver to look up a client’s identity in some data store (text file by default), and retrieve the credentials from the
data store. The “resolved” credentials are then compared to the values submitted by the client to determine whether
authentication is successful.

87.3 Configuration Options

The Zend\Authentication\Adapter\Http class requires a configuration array passed to its constructor.
There are several configuration options available, and some are required:

313

http://tools.ietf.org/html/rfc2617
http://en.wikipedia.org/wiki/Basic_authentication_scheme
http://en.wikipedia.org/wiki/Digest_access_authentication

Zend Framework 2 Documentation, Release 2.3.5

Table 87.1: Configuration Options

contains digest

Option | Required Description

Name

ac- Yes Determines which authentication schemes the adapter will accept from the

cept_schemes client. Must be a space-separated list containing ‘basic’ and/or ‘digest’.

realm Yes Sets the authentication realm; usernames should be unique within a given
realm.

di- Yes, when Space-separated list of URIs for which the same authentication information

gest_domainscept_schemes is valid. The URIs need not all point to the same server.

nonce_timedes, when

Sets the number of seconds for which the nonce is valid. See notes below.

accept_schemes
contains digest
use_opaqueNo

algo- No

rithm
proxy_authNo

Specifies whether to send the opaque value in the header. True by default.
Specified the algorithm. Defaults to MDS5, the only supported option (for
now).

Disabled by default. Enable to perform Proxy authentication, instead of
normal origin server authentication.

Note: The current implementation of the nonce_timeout has some interesting side effects. This setting is sup-
posed to determine the valid lifetime of a given nonce, or effectively how long a client’s authentication information

is accepted. Currently, if it’s set to 3600 (for example), it will cause the adapter to prompt the client for new cre-
dentials every hour, on the hour. This will be resolved in a future release, once nonce tracking and stale support are
implemented.

87.4 Resolvers

The resolver’s job is to take a username and realm, and return some kind of credential value. Basic authentication
expects to receive the Base64 encoded version of the user’s password. Digest authentication expects to receive a hash
of the user’s username, the realm, and their password (each separated by colons). Currently, the only supported hash
algorithm is MD5.

Zend\Authentication\Adapter\Http relies on objects implementing
Zend\Authentication\Adapter\Http\ResolverInterface. A text file resolver class is included with
this adapter, but any other kind of resolver can be created simply by implementing the resolver interface.

87.4.1 File Resolver

The file resolver is a very simple class. It has a single property specifying a filename, which can also be passed to the
constructor. Its resolve () method walks through the text file, searching for a line with a matching username and
realm. The text file format similar to Apache htpasswd files:

<username>:<realm>:<credentials>\n

Each line consists of three fields - username, realm, and credentials - each separated by a colon. The credentials field
is opaque to the file resolver; it simply returns that value as-is to the caller. Therefore, this same file format serves both
Basic and Digest authentication. In Basic authentication, the credentials field should be written in clear text. In Digest
authentication, it should be the MDJ5 hash described above.

There are two equally easy ways to create a File resolver:

314 Chapter 87. HTTP Authentication Adapter

Zend Framework 2 Documentation, Release 2.3.5

use Zend\Authentication\Adapter\Http\FileResolver;

Spath = 'files/passwd.txt’;
Sresolver = new FileResolver (Spath);
or

$path = ’files/passwd.txt’;

= new FileResolver();
Sresolver—->setFile ($Spath);

If the given path is empty or not readable, an exception is thrown.

87.5 Basic Usage

First, set up an array with the required configuration values:

Sconfig = array(
"accept_schemes’ => ’'basic digest’,
"realm’ => 'My Web Site’,

"digest_domains’ => ' /members_only /my_account’,
"nonce_timeout’ => 3600,

)i

This array will cause the adapter to accept either Basic or Digest authentication, and will require authenticated access
to all the areas of the site under /members_only and /my_account. The realm value is usually displayed by the
browser in the password dialog box. The nonce_t imeout, of course, behaves as described above.

Next, create the Zend\Authentication\Adapter\Http object:

Sadapter = new Zend\Authentication\Adapter\Http (Sconfig);

Since we’re supporting both Basic and Digest authentication, we need two different resolver objects. Note that this
could just as easily be two different classes:

use Zend\Authentication\Adapter\Http\FileResolver;

ShasicResolver = new FileResolver();
SbasicResolver—->setFile (' files/basicPasswd.txt’);

SdigestResolver = new FileResolver();
SdigestResolver->setFile (' files/digestPasswd.txt’);

adapter—->setBasicResolver (SbasicResolver);

v Ay

adapter->setDigestResolver ($digestResolver) ;

Finally, we perform the authentication. The adapter needs a reference to both the Request and Response objects in
order to do its job:

assert (Srequest instanceof Zend\Http\Request);
assert (Sresponse instanceof Zend\Http\Response);

Sadapter—->setRequest ($request) ;
Sadapter—->setResponse (Sresponse) ;

Sresult = Sadapter->authenticate();
if (!Sresult->isvalid()) {
// Bad username/password, or canceled password prompt

87.5. Basic Usage 315

Zend Framework 2 Documentation, Release 2.3.5

316 Chapter 87. HTTP Authentication Adapter

20

21

22

23

CHAPTER 88

LDAP Authentication

88.1 Introduction

Zend\Authentication\Adapter\Ldap supports web application authentication with LDAP services. Its fea-
tures include username and domain name canonicalization, multi-domain authentication, and failover capabilities. It
has been tested to work with Microsoft Active Directory and OpenLDAP, but it should also work with other LDAP

service providers.

This documentation includes a guide on using Zend\Authentication\Adapter\Ldap, an exploration of its
API, an outline of the various available options, diagnostic information for troubleshooting authentication problems,

and example options for both Active Directory and OpenLDAP servers.

88.2 Usage

To incorporate Zend\Authentication\Adapter\Ldap authentication into your application quickly, even if
you’re not using Zend\Mvc, the meat of your code should look something like the following:

use Zend\Authentication\AuthenticationService;

use Zend\Authentication\Adapter\Ldap as AuthAdapter;
use Zend\Config\Reader\Ini as ConfigReader;

use Zend\Config\Config;

use Zend\Log\Logger;

use Zend\Log\Writer\Stream as LogWriter;

use Zend\Log\Filter\Priority as LogFilter;

Susername = $this->getRequest () ->getPost (' username’) ;
Spassword = $this->getRequest () ->getPost (' password’) ;
Sauth = new AuthenticationService();

SconfigReader = new ConfigReader();

Sconfigbhata = $configReader->fromFile (’./ldap-config.ini’);

Sconfig = new Config(Sconfigbata, true);

$log_path = $config->production->ldap->log_path;
Sconfig->production—->1ldap—->toArray();

Soptions =
unset (Soptions [’ log_path’]);

Sadapter = new AuthAdapter (Soptions,

317

http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/
http://www.openldap.org/

40

41

42

43

44

45

46

Zend Framework 2 Documentation, Release 2.3.5

username,

Ur

password) ;

Sresult = Sauth->authenticate ($adapter);

if (Slog_path) {

Smessages = $result->getMessages () ;

Slogger = new Logger;

Swriter = new LogWriter ($log_path);

Slogger->addWriter (Swriter);

Sfilter = new LogFilter (Logger: :DEBUG);
Swriter—->addFilter ($filter);

foreach ($messages as $i => Smessage) {
if (Si— > 1)

Smessage = str_replace("\n",

$Slogger—->debug ("Ldap: Si:

Of course, the logging code is optional,

n
’

{ // Smessages[2] and up are log messages

n\n

Smessage) ;

but it is highly recommended that you use a logger.

Zend\Authentication\Adapter\Ldap will record just about every bit of information anyone could want
in $messages (more below), which is a nice feature in itself for something that has a history of being notoriously

difficult to debug.

The Zend\Config\Reader\Ini code is used above to load the adapter options. Itis also optional. A regular array
would work equally well. The following is an example 1dap-config.ini file that has options for two separate
servers. With multiple sets of server options the adapter will try each, in order, until the credentials are successfully
authenticated. The names of the servers (e.g., ‘serverl’ and ‘server2’) are largely arbitrary. For details regarding the
options array, see the Server Options section below. Note that Zend\Config\Reader\Ini requires that any
values with “equals” characters (=) will need to be quoted (like the DNs shown below).

[production]
ldap.log_path = /tmp/ldap.log

; Typical options for OpenLDAP

ldap.serverl.host = s0.foo.net
ldap.serverl.accountDomainName = foo.net
ldap.serverl.accountDomainNameShort = FOO
ldap.serverl.accountCanonicalForm = 3
ldap.serverl.username = "CN=userl,DC=foo,DC=net"
ldap.serverl.password = passl
ldap.serverl.baseDn = "OU=Sales,DC=foo,DC=net"
ldap.serverl.bindRequiresDn = true

; Typical options for Active Directory
ldap. .host = dcl.w.net
ldap. .useStartTls = true
ldap. accountDomainName =
ldap. accountDomainNameShort = W
ldap.
ldap.

server?2
server?2
server2. w.net
server2.
accountCanonicalForm = 3

"CN=Users, DC=w, DC=net"

server2.

server2.baseDn =

318

Chapter 88.

LDAP Authentication

20

21

22

23

24

25

Zend Framework 2 Documentation, Release 2.3.5

The above configuration will instruct Zend\Authentication\Adapter\Ldap to attempt to authenticate users
with the OpenLDAP server s0. foo.net first. If the authentication fails for any reason, the AD server dc1.w.net
will be tried.

With servers in different domains, this configuration illustrates multi-domain authentication. You can also have multi-
ple servers in the same domain to provide redundancy.

Note that in this case, even though OpenLDAP has no need for the short NetBIOS style domain name used by Win-
dows, we provide it here for name canonicalization purposes (described in the Username Canonicalization section
below).

88.3 The API

The Zend\Authentication\Adapter\Ldap constructor accepts three parameters.

The $options parameter is required and must be an array containing one or more sets of options. Note that it is an
array of arrays of Zend\Ldap\Ldap options. Even if you will be using only one LDAP server, the options must still
be within another array.

Below is print_r() output of an example options parameter containing two sets of server options for LDAP servers
s0.foo.net and dcl.w.net (the same options as the above INI representation):

Array
(
[server2] => Array
(
[host] => dcl.w.net
[useStartTls] => 1
[accountDomainName] => w.net
[accountDomainNameShort] => W
[accountCanonicalForm] => 3
[baseDn] => CN=Users,DC=w,DC=net
)
[serverl] => Array

(
[host] => s0.foo.net
[accountDomainName] => foo.net
[accountDomainNameShort] => FOO
[accountCanonicalForm] => 3
[username] => CN=userl,DC=foo,DC=net
[password] => passl
[baseDn] => 0OU=Sales,DC=foo,DC=net
[bindRequiresDn] => 1

The information provided in each set of options above is different mainly because AD does not require a username be
in DN form when binding (see the bindRequiresDn option in the Server Options section below), which means
we can omit a number of options associated with retrieving the DN for a username being authenticated.

Note: What is a Distinguished Name?

A DN or “distinguished name” is a string that represents the path to an object within the LDAP directory. Each
comma-separated component is an attribute and value representing a node. The components are evaluated in re-
verse. For example, the user account CN=Bob Carter,CN=Users,DC=w,DC=net is located directly within the

88.3. The API 319

http://php.net/print_r

Zend Framework 2 Documentation, Release 2.3.5

CN=Users,DC=w,DC=net container. This structure is best explored with an LDAP browser like the ADSI Edit
MMC snap-in for Active Directory or phpLDAPadmin.

The names of servers (e.g. ‘serverl’ and ‘server2’ shown above) are largely arbitrary, but for the sake of using
Zend\Config\Reader\Ini, the identifiers should be present (as opposed to being numeric indexes) and should
not contain any special characters used by the associated file formats (e.g. the ‘.‘INI property separator, ‘&* for XML
entity references, etc).

With multiple sets of server options, the adapter can authenticate users in multiple domains and provide failover so
that if one server is not available, another will be queried.

Note: The Gory Details: What Happens in the Authenticate Method?

When the authenticate () method is called, the adapter iterates over each set of server options, sets them on
the internal Zend\Ldap\Ldap instance, and calls the Zend\Ldap\Ldap: :bind () method with the username
and password being authenticated. The Zend\Ldap\Ldap class checks to see if the username is qualified with a
domain (e.g., has a domain component like alice@foo.net or FOO\alice). If a domain is present, but does
not match either of the server’s domain names (foo.net or FOO), a special exception is thrown and caught by
Zend\Authentication\Adapter\Ldap that causes that server to be ignored and the next set of server op-
tions is selected. If a domain does match, or if the user did not supply a qualified username, Zend\Ldap\Ldap
proceeds to try to bind with the supplied credentials. if the bind is not successful, Zend\Ldap\Ldap throws a
Zend\Ldap\Exception\LdapException which is caught by Zend\Authentication\Adapter\Ldap
and the next set of server options is tried. If the bind is successful, the iteration stops, and the adapter’s
authenticate () method returns a successful result. If all server options have been tried without success, the
authentication fails, and authenticate () returns a failure result with error messages from the last iteration.

The username and password parameters of the Zend\Authentication\Adapter\Ldap constructor represent
the credentials being authenticated (i.e., the credentials supplied by the user through your HTML login form). Alter-
natively, they may also be set with the setUsername () and setPassword () methods.

88.4 Server Options

Each set of server options in the context of Zend\Authentication\Adapter\Ldap consists of the following options,
which are passed, largely unmodified, to Zend\Ldap\Ldap: : setOptions ():

320 Chapter 88. LDAP Authentication

Zend Framework 2 Documentation, Release 2.3.5

Table 88.1: Server Options

Name

Description

host

The hostname of LDAP server that these options represent. This option is required.

port

The port on which the LDAP server is listening. If useSsl is TRUE, the default port value is
636. If useSsl is FALSE, the default port value is 389.

useStartTls

Whether or not the LDAP client should use TLS (aka SSLv2) encrypted transport. A value of
TRUE is strongly favored in production environments to prevent passwords from be transmitted
in clear text. The default value is FALSE, as servers frequently require that a certificate be
installed separately after installation. The useSsl and useStartTls options are mutually
exclusive. The useStartTls option should be favored over useSsl but not all servers support this
newer mechanism.

useSsl

Whether or not the LDAP client should use SSL encrypted transport. The useSsl and
useStartTls options are mutually exclusive, but useStartTls should be favored if the server and
LDAP client library support it. This value also changes the default port value (see port
description above).

username

The DN of the account used to perform account DN lookups. LDAP servers that require the
username to be in DN form when performing the “bind” require this option. Meaning, if
bindRequiresDn is TRUE, this option is required. This account does not need to be a privileged
account; an account with read-only access to objects under the baseDn is all that is necessary
(and preferred based on the Principle of Least Privilege).

password

The password of the account used to perform account DN lookups. If this option is not supplied,
the LDAP client will attempt an “anonymous bind”” when performing account DN lookups.

bindRequiresDn

Some LDAP servers require that the username used to bind be in DN form like CN=Alice
Baker,0OU=Sales,DC=foo,DC=net (basically all servers except AD). If this option is TRUE, this
instructs Zend\Ldap\Ldap to automatically retrieve the DN corresponding to the username
being authenticated, if it is not already in DN form, and then re-bind with the proper DN. The
default value is FALSE. Currently only Microsoft Active Directory Server (ADS) is known not
to require usernames to be in DN form when binding, and therefore this option may be FALSE
with AD (and it should be, as retrieving the DN requires an extra round trip to the server).
Otherwise, this option must be set to TRUE (e.g. for OpenLLDAP). This option also controls the
default accountFilterFormat used when searching for accounts. See the accountFilterFormat
option.

baseDn

The DN under which all accounts being authenticated are located. This option is required. if
you are uncertain about the correct baseDn value, it should be sufficient to derive it from the
user’s DNS domain using DC= components. For example, if the user’s principal name is
alice@foo.net, a baseDn of DC=foo,DC=net should work. A more precise location (e.g.,
OU=Sales,DC=foo,DC=net) will be more efficient, however.

accountCanon-
icalForm

A value of 2, 3 or 4 indicating the form to which account names should be canonicalized after
successful authentication. Values are as follows: 2 for traditional username style names (e.g.,
alice), 3 for backslash-style names (e.g., FOO\alice) or 4 for principal style usernames (e.g.,
alice@foo.net). The default value is 4 (e.g., alice@foo.net). For example, with a value of 3, the
identity returned by Zend\Authentication\Result::getldentity() (and
Zend\Authentication\AuthenticationService::getldentity(), if
Zend\Authentication\AuthenticationService was used) will always be FOO\alice, regardless of
what form Alice supplied, whether it be alice, alice @foo.net, FOO\alice, FoO\aLicE,
foo.net\alice, etc. See the Account Name Canonicalization section in the Zend\Ldap\Ldap
documentation for details. Note that when using multiple sets of server options it is
recommended, but not required, that the same accountCanonicalForm be used with all server
options so that the resulting usernames are always canonicalized to the same form (e.g., if you
canonicalize to EXAMPLE\username with an AD server but to username @example.com with
an OpenLDAP server, that may be awkward for the application’s high-level logic).

accountDo-
mainName

The FQDN domain name for which the target LDAP server is an authority (e.g., example.com).
This option is used to canonicalize names so that the username supplied by the user can be
converted as necessary for binding. It is also used to determine if the server is an authority for

88.4. Server Op

Dtlb

18% supplied username (e.g., if accountDomainName 18 foo.net and the user supplies 391
ob% bar.net, the server will not be queried, and a failure will result). This option is not
required, but if it is not supplied, usernames in principal name form (e.g., alice @foo.net) are
not supported. It is strongly recommended that you supply this option, as there are many
use-cases that reaquire eeneratine the nrincinal name form.

mailto:alice@foo.net
mailto:alice@foo.net
mailto:alice@foo.net
mailto:alice@foo.net
mailto:username@example.com
mailto:bob@bar.net
mailto:alice@foo.net

Zend Framework 2 Documentation, Release 2.3.5

Note: If you enable useStartTls = TRUE or useSsl = TRUE you may find that the LDAP client generates an
error claiming that it cannot validate the server’s certificate. Assuming the PHP LDAP extension is ultimately linked

to the OpenLDAP client libraries, to resolve this issue you can set “TLS_REQCERT never” in the OpenLDAP
client 1dap.conf (and restart the web server) to indicate to the OpenLDAP client library that you trust the server.
Alternatively, if you are concerned that the server could be spoofed, you can export the LDAP server’s root certificate
and put it on the web server so that the OpenLDAP client can validate the server’s identity.

88.5 Collecting Debugging Messages

Zend\Authentication\Adapter\Ldap collects debugging information within its authenticate ()
method. This information is stored in the Zend\Authentication\Result object as messages. The array re-
turned by Zend\Authentication\Result: :getMessages () is described as follows

Table 88.2: Debugging Messages

Messages Description

Array Index

Index 0 A generic, user-friendly message that is suitable for displaying to users (e.g., “Invalid
credentials”). If the authentication is successful, this string is empty.

Index 1 A more detailed error message that is not suitable to be displayed to users but should be logged

for the benefit of server operators. If the authentication is successful, this string is empty.
Indexes 2 and | All log messages in order starting at index 2.
higher

In practice, index 0 should be displayed to the user (e.g., using the FlashMessenger helper), index 1 should be logged
and, if debugging information is being collected, indexes 2 and higher could be logged as well (although the final
message always includes the string from index 1).

88.6 Common Options for Specific Servers

88.6.1 Options for Active Directory

For ADS, the following options are noteworthy:

322 Chapter 88. LDAP Authentication

Zend Framework 2 Documentation, Release 2.3.5

Table 88.3: Options for Active Directory

Name Additional Notes

host As with all servers, this option is required.

useStartTls For the sake of security, this should be TRUE if the server has the necessary certificate installed.
useSsl Possibly used as an alternative to useStartTls (see above).

baseDn As with all servers, this option is required. By default AD places all user accounts under the

Users container (e.g., CN=Users,DC=foo,DC=net), but the default is not common in larger
organizations. Ask your AD administrator what the best DN for accounts for your application

would be.
accountCanon- | You almost certainly want this to be 3 for backslash style names (e.g., FOO\alice), which are
icalForm most familiar to Windows users. You should not use the unqualified form 2 (e.g., alice), as this

may grant access to your application to users with the same username in other trusted domains
(e.g., BAR\alice and FOO\alice will be treated as the same user). (See also note below.)

accountDo- This is required with AD unless accountCanonicalForm 2 is used, which, again, is discouraged.
mainName
accountDo- The NetBIOS name of the domain that users are in and for which the AD server is an authority.
main- This is required if the backslash style accountCanonicalForm is used.
NameShort

Note: Technically there should be no danger of accidental cross-domain authentication with the current

Zend\Authentication\Adapter\Ldap implementation, since server domains are explicitly checked, but this
may not be true of a future implementation that discovers the domain at runtime, or if an alternative adapter is used
(e.g., Kerberos). In general, account name ambiguity is known to be the source of security issues, so always try to use
qualified account names.

88.6.2 Options for OpenLDAP

For OpenLDAP or a generic LDAP server using a typical posixAccount style schema, the following options are note-
worthy:

88.6. Common Options for Specific Servers 323

Zend Framework 2 Documentation, Release 2.3.5

Table 88.4: Options for OpenLDAP

Name Additional Notes

host As with all servers, this option is required.

useStartTls For the sake of security, this should be TRUE if the server has the necessary certificate installed.

useSsl Possibly used as an alternative to useStartTls (see above).

username Required and must be a DN, as OpenLDAP requires that usernames be in DN form when
performing a bind. Try to use an unprivileged account.

password The password corresponding to the username above, but this may be omitted if the LDAP
server permits an anonymous binding to query user accounts.

bindRequiresDn| Required and must be TRUE, as OpenLDAP requires that usernames be in DN form when
performing a bind.

baseDn As with all servers, this option is required and indicates the DN under which all accounts being
authenticated are located.

accountCanon- | Optional, but the default value is 4 (principal style names like alice @foo.net), which may not

icalForm be ideal if your users are used to backslash style names (e.g., FOO\alice). For backslash style
names use value 3.

accountDo- Required unless you’re using accountCanonicalForm 2, which is not recommended.

mainName

accountDo- If AD is not also being used, this value is not required. Otherwise, if accountCanonicalForm 3

main- is used, this option is required and should be a short name that corresponds adequately to the

NameShort accountDomainName (e.g., if your accountDomainName is foo.net, a good
accountDomainNameShort value might be FOO).

324 Chapter 88. LDAP Authentication

mailto:alice@foo.net

CHAPTER 89

Authentication Validator

89.1 Introduction

Zend\Authentication\Validator\Authentication provides the ability to utilize a validator for an In-
putFilter in the instance of a Form or for single use where you simply want a true/false value and being able to

introspect the error.
The available configuration options include:
 adapter: This is an instance of Zend\Authentication\Adapter.
* identity: This is the identity or name of the identity in the passed in context.
* credential: This is the credential or the name of the credential in the passed in context.

e service: This is an instance of Zend\Authentication\AuthenticationService

89.2 Basic Usage

use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Validator\Authentication as AuthenticationValidator;

= new AuthenticationService();
= new My\Authentication\Adapter () ;
Svalidator = new AuthenticationValidator (array (

"service’ => S$service,

"adapter’ => Sadapter,

)) i

Svalidator->setCredential ('myCredentialContext’);
Svalidator—->isValid ('myIdentity’, array (
"myCredentialContext’ => "myCredential’,

)) i

325

Zend Framework 2 Documentation, Release 2.3.5

326 Chapter 89. Authentication Validator

CHAPTER 90

Introduction to Zend\Barcode

90.1 Overview

Zend\Barcode\Barcode provides a generic way to generate barcodes. The Zend\Barcode component is
divided into two subcomponents: barcode objects and renderers. Objects allow you to create barcodes independently
of the renderer. Renderer allow you to draw barcodes based on the support required.

327

Zend Framework 2 Documentation, Release 2.3.5

328 Chapter 90. Introduction to Zend\Barcode

R v R

CHAPTER 91

Barcode creation using Zend\Barcode\Barcode class

91.1 Using Zend\Barcode\Barcode::factory

Zend\Barcode\Barcode uses a factory method to create an instance of a renderer that extends
Zend\Barcode\Renderer\AbstractRenderer. The factory method accepts five arguments.

* The name of the barcode format (e.g., “code39”) or a Traversable object (required)
* The name of the renderer (e.g., “image”) (required)

 Options to pass to the barcode object (an array or a Traversable object) (optional)

» Options to pass to the renderer object (an array or a Traversable object) (optional)

¢ Boolean to indicate whether or not to automatically render errors. If an exception occurs, the provided barcode
object will be replaced with an Error representation (optional default TRUE)

Getting a Renderer with Zend\Barcode\Barcode::factory()

Zend\Barcode\Barcode: : factory () instantiates barcode classes and renderers and ties them together. In
this first example, we will use the Code39 barcode type together with the Image renderer.

use Zend\Barcode\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’text’ => ’'ZEND-FRAMEWORK’) ;

// No required options
SrendererOptions = array();
Srenderer = Barcode::factory(
"code39’, ’image’, S$barcodeOptions, S$rendererOptions

)i

Using Zend\Barcode\Barcode::factory() with Zend\Config\Config objects

You may pass a Zend\Config\Config object to the factory in order to create the necessary objects. The following
example is functionally equivalent to the previous.

use Zend\Config\Config;
use Zend\Barcode\Barcode;

329

http://php.net/traversable
http://php.net/traversable
http://php.net/traversable

Zend Framework 2 Documentation, Release 2.3.5

// Using only one Zend\Config\Config object

Sconfig = new Config(array (
"barcode’ => 'code39’,
"barcodeParams’ => array (' text’ => ’ZEND-FRAMEWORK’),
"renderer’ => ’image’,

"rendererParams’ => array(’imageType’ => ’'gif’),

)) i

Srenderer = Barcode::factory(Sconfig);

91.2 Drawing a barcode

When you draw the barcode, you retrieve the resource in which the barcode is drawn. To draw a barcode, you can call
the draw () of the renderer, or simply use the proxy method provided by Zend\Barcode\Barcode.

Drawing a barcode with the renderer object

use Zend\Barcode\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’text’ => ’'ZEND-FRAMEWORK’) ;

// No required options
SrendererOptions = array/();

// Draw the barcode in a new image,
SimageResource = Barcode::factory (

"code39’, ’image’, S$barcodeOptions, S$rendererOptions
) —>draw () ;

Drawing a barcode with Zend\Barcode\Barcode::draw()

use Zend\Barcode\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’text’ => ’ZEND-FRAMEWORK’) ;

// No required options
SrendererOptions = array/();

// Draw the barcode in a new image,
SimageResource = Barcode::draw(
"code39’, ’image’, S$barcodeOptions, S$rendererOptions

)i

91.3 Rendering a barcode

When you render a barcode, you draw the barcode, you send the headers and you send the resource (e.g. to a browser).
To render a barcode, you can call the render () method of the renderer or simply use the proxy method provided by
Zend\Barcode\Barcode

330 Chapter 91. Barcode creation using Zend\Barcode\Barcode class

Zend Framework 2 Documentation, Release 2.3.5

Rendering a barcode with the renderer object

use Zend\Barcode\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’text’ => ’ZEND-FRAMEWORK') ;

// No required options
SrendererOptions = array/();

// Draw the barcode in a new image,
// send the headers and the image
Barcode: :factory(

"code39’, ’'image’, S$barc

) —>render () ;

This will generate this barcode:

¥ ZEND-FRAMEWORK*

Rendering a barcode with Zend\Barcode\Barcode::render()

use Zend\Barcode\Barcode;

// Only the text to draw is required
$b eOptions = array(’'text’ => ’ZEND-FRAMEWORK’) ;

// No required options
SrendererOptions = array/();

// Draw the barcode in a new image,
// send the headers and the image
Barcode: :render (
"code39’, ’image’, S$barcodeOptions, S$rendererOptions

)i

This will generate the same barcode as the previous example.

91.3. Rendering a barcode

331

Zend Framework 2 Documentation, Release 2.3.5

332 Chapter 91. Barcode creation using Zend\Barcode\Barcode class

CHAPTER 92

Zend\Barcode Objects

Barcode objects allow you to generate barcodes independently of the rendering support. After generation, you can
retrieve the barcode as an array of drawing instructions that you can provide to a renderer.

Objects have a large number of options. Most of them are common to all objects. These options can be set in three
ways:

e As an array or a Traversable object passed to the constructor.
* As an array passed to the setOptions () method.

* Via individual setters for each configuration type.

Different ways to parameterize a barcode object

use Zend\Barcode\Object;
Soptions = array(’text’ => ’'ZEND-FRAMEWORK’, ’barHeight’ => 40);

// Case 1: constructor
Shbarcode = new Object\Code39 (Soptions);

// Case 2: setOptions/()
Sharcode = new Object\Code39();
$barcode->setOptions (Soptions);

individual setters

s new Object\Code39 () ;

Sbarcode—->setText (/ ZEND-FRAMEWORK’)
—->setBarHeight (40);

92.1 Common Options

In the following list, the values have no units; we will use the term “unit.” For example, the default value of the
“thin bar” is “1 unit”. The real units depend on the rendering support (see the renderers documentation for more
information). Setters are each named by uppercasing the initial letter of the option and prefixing the name with
“set” (e.g. “barHeight” becomes “setBarHeight”). All options have a corresponding getter prefixed with “get” (e.g.
“getBarHeight”). Available options are:

333

http://php.net/traversable

Zend Framework 2 Documentation, Release 2.3.5

Table 92.1: Common Options

Option Data Type Default Description
Value
barcode- String Zend\Barcode\Olayjeetspace of the barcode; for example, if you need to extend
Namespace the embedding objects
barHeight Integer 50 Height of the bars
barThick- Integer 3 Width of the thick bar
Width
barThin- Integer 1 Width of the thin bar
Width
factor Integer, Float, 1 Factor by which to multiply bar widths and font sizes
String or Boolean (barHeight, barThinWidth, barThickWidth and fontSize)
foreColor Integer 0x000000 Color of the bar and the text. Could be provided as an integer
(black) or as a HTML value (e.g. “#333333”)
back- Integer or String OxFFFFFF Color of the background. Could be provided as an integer or
ground- (white) as a HTML value (e.g. “#333333”)
Color
orientation Integer, Float, 0 Orientation of the barcode
String or Boolean
font String or Integer NULL Font path to a TTF font or a number between 1 and 5 if using
image generation with GD (internal fonts)
fontSize Float 10 Size of the font (not applicable with numeric fonts)
withBorder | Boolean FALSE Draw a border around the barcode and the quiet zones
withQuiet- Boolean TRUE Leave a quiet zone before and after the barcode
Zones
drawText Boolean TRUE Set if the text is displayed below the barcode
stretchText | Boolean FALSE Specify if the text is stretched all along the barcode
withCheck- | Boolean FALSE Indicate whether or not the checksum is automatically added
sum to the barcode
withCheck- | Boolean FALSE Indicate whether or not the checksum is displayed in the
sumInText textual representation
text String NULL The text to represent as a barcode

92.1.1 Particular case of static setBarcodeFont()

You can

set a
Zzend\Barcode\Barcode: :setBarcodeFont ().
ual objects by using the setFont () method.

common

use Zend\Barcode\Barcode;

// In your bootstrap:
Barcode: :setBarcodeFont (‘my_font.ttf’);

// Later in your code:
Barcode: :render (
"code39’,

"pdf’,

font

for

array (' text’ => ’ZEND-FRAMEWORK")

y; // will use

// or:

‘my_font.

Barcode: :render (

ttr’

all your objects by using the static method
This value can be always be overridden for individ-

334

Chapter 92. Zend\Barcode Objects

Zend Framework 2 Documentation, Release 2.3.5

"code39’,
"image’,
array (
"text’
"font’
)
y; // will use

=> ' ZEND-FRAMEWORK' ,
=> 3

the 3rd GD internal font

92.2 Common Additional Getters

Table 92.2: Common Getters

Getter Data Description
Type
getType() String Return the name of the barcode class without the namespace (e.g.
Zend\Barcode\Object\Code39 returns simply “code39”)
getRawText() String Return the original text provided to the object
getTextToDisplay() String Return the text to display, including, if activated, the checksum value
getQuietZone() Integer | Return the size of the space needed before and after the barcode without any
drawing
getInstructions() Array Return drawing instructions as an array.
getH- Integer | Return the height of the barcode calculated after possible rotation
eight($recalculate =
false)
getWidth($recalculate | Integer | Return the width of the barcode calculated after possible rotation
= false)
getOffset- Integer | Return the position of the top of the barcode calculated after possible rotation
Top($recalculate =
false)
getOff- Integer | Return the position of the left of the barcode calculated after possible rotation
setLeft($recalculate =
false)
orphan

92.3 Description of shipped barcodes

You will find below detailed information about all barcode types shipped by default with Zend Framework.

92.3.1 Zend\Barcode\Object\Error

ERROR.:

'a' contains invalid characters

This barcode is a special case. It is internally used to automatically render an exception caught by the Zend\Barcode

component.

92.2. Common Additional Getters

335

Zend Framework 2 Documentation, Release 2.3.5

92.3.2 Zend\Barcode\Object\Code128

e Name: Code 128

* Allowed characters: the complete ASCII-character set
e Checksum: optional (modulo 103)

* Length: variable

There are no particular options for this barcode.

92.3.3 Zend\Barcode\Object\Codabar

¢ Name: Codabar (or Code 2 of 7)

* Allowed characters:‘0123456789-$:/.+* with ‘ABCD’ as start and stop characters
* Checksum: none
* Length: variable

There are no particular options for this barcode.

92.3.4 Zend\Barcode\Object\Code25

19071982

e Name: Code 25 (or Code 2 of 5 or Code 25 Industrial)
» Allowed characters: ‘0123456789’

¢ Checksum: optional (modulo 10)

* Length: variable

There are no particular options for this barcode.

336 Chapter 92. Zend\Barcode Objects

Zend Framework 2 Documentation, Release 2.3.5

92.3.5 Zend\Barcode\Object\Code25interleaved

05032007

This barcode extends Zend\Barcode\Object\Code25 (Code 2 of 5), and has the same particulars and options,
and adds the following:

e Name: Code 2 of 5 Interleaved

* Allowed characters: ‘0123456789’

¢ Checksum: optional (modulo 10)

* Length: variable (always even number of characters)

Available options include:

Table 92.3: Zend\Barcode\Object\Code25interleaved Options

Option Data Type | Default Value | Description
withBearerBars | Boolean FALSE Draw a thick bar at the top and the bottom of the barcode.

Note: If the number of characters is not even, Zend\Barcode\Object\Code25interleaved will automati-
cally prepend the missing zero to the barcode text.
12

This barcode extends Zend\Barcode\Object \Ean5 (EAN 5), and has the same particulars and options, and adds
the following:

e Name: FAN-2
¢ Allowed characters:‘0123456789’

92.3.6 Zend\Barcode\Object\Ean2

* Checksum: only use internally but not displayed
e Length: 2 characters

There are no particular options for this barcode.

Note: If the number of characters is lower than 2, Zend\Barcode\Object \Ean2 will automatically prepend the
missing zero to the barcode text.

92.3. Description of shipped barcodes 337

Zend Framework 2 Documentation, Release 2.3.5

12345

This barcode extends Zend\Barcode\Object\Eanl3 (EAN 13), and has the same particulars and options, and
adds the following:

e Name: EAN-5
¢ Allowed characters: ‘0123456789’

92.3.7 Zend\Barcode\Object\Ean5

* Checksum: only use internally but not displayed
¢ Length: 5 characters

There are no particular options for this barcode.

Note: If the number of characters is lower than 5, Zend\Barcode\Ob ject \Ean5 will automatically prepend the

missing zero to the barcode text.
1234 ‘5 670

This barcode extends Zend\Barcode\Object\Eanl3 (EAN 13), and has the same particulars and options, and
adds the following:

e Name: FAN-8
¢ Allowed characters: ‘0123456789’

92.3.8 Zend\Barcode\Object\Ean8

¢ Checksum: mandatory (modulo 10)
* Length: 8 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 8, Zend\Barcode\Object \Ean8 will automatically prepend the

missing zero to the barcode text.
1 ‘2345 E?HEQDI EEH

338 Chapter 92. Zend\Barcode Objects

92.3.9 Zend\Barcode\Object\Ean13

Zend Framework 2 Documentation, Release 2.3.5

e Name: FAN-13

» Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

* Length: 13 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 13, Zend\Barcode\Object\Eanl3 will automatically prepend
the missing zero to the barcode text.

The option withQuietZones has no effect with this barcode.

92.3.10 Zend\Barcode\Object\Code39

7EMND-FRAMEBEW OREK
¢ Name: Code 39

Allowed characters: ‘0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ -.$/+%’

¢ Checksum: optional (modulo 43)

* Length: variable

Note: Zend\Barcode\Object\Code39 will automatically add the start and stop characters (“**) for you.

There are no particular options for this barcode.

92.3.11 Zend\Barcode\Object\ldentcode

12.345 678,901 6

This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits
some of its capabilities; it also has a few particulars of its own.

¢ Name: Identcode (Deutsche Post Identcode)

» Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10 different from Code25)
* Length: 12 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 12, Zend\Barcode\Object\Identcode will automatically
prepend missing zeros to the barcode text.

92.3. Description of shipped barcodes 339

Zend Framework 2 Documentation, Release 2.3.5

92.3.12 Zend\Barcode\Object\ltf14

123456789012 31

This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits
some of its capabilities; it also has a few particulars of its own.

e Name: ITF-14

* Allowed characters: ‘0123456789’

e Checksum: mandatory (modulo 10)

* Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 14, Zend\Barcode\Object\Itf£14 will automatically prepend
missing zeros to the barcode text.

92.3.13 Zend\Barcode\Object\Leitcode

12345.6/78.901.23 6

This barcode extends Zend\Barcode\Object\Identcode (Deutsche Post Identcode), and inherits some of its
capabilities; it also has a few particulars of its own.

¢ Name: Leitcode (Deutsche Post Leitcode)

* Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10 different from Code25)
* Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 14, Zend\Barcode\Object\Leitcode will automatically
prepend missing zeros to the barcode text.

92.3.14 Zend\Barcode\Object\Planet

* Name: Planet (Postal. Alpha Numeric Encoding Technique)

340 Chapter 92. Zend\Barcode Objects

Zend Framework 2 Documentation, Release 2.3.5

* Allowed characters: ‘0123456789’
* Checksum: mandatory (modulo 10)
* Length: 12 or 14 characters (including checksum)

There are no particular options for this barcode.

92.3.15 Zend\Barcode\Object\Postnet

* Name: Postnet (POSTal Numeric Encoding Technique)
¢ Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)
* Length: 6, 7, 10 or 12 characters (including checksum)

There are no particular options for this barcode.

92.3.16 Zend\Barcode\Object\Royalmail

Liaf g ey 00|
* Name: Royal Mail or RM4SCC (Royal Mail 4-State Customer Code)
* Allowed characters: ‘0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ’
¢ Checksum: mandatory
* Length: variable

There are no particular options for this barcode.

92.3.17 Zend\Barcode\Object\Upca

123456 7800172

This barcode extends Zend\Barcode\Object\Eanl3 (EAN-13), and inherits some of its capabilities; it also has
a few particulars of its own.

e Name: UPC-A (Universal Product Code)
¢ Allowed characters: ‘0123456789’
¢ Checksum: mandatory (modulo 10)

* Length: 12 characters (including checksum)

92.3. Description of shipped barcodes 341

Zend Framework 2 Documentation, Release 2.3.5

There are no particular options for this barcode.

Note: If the number of characters is lower than 12, Zend\Barcode\Object \Upca will automatically prepend
missing zeros to the barcode text.

The option withQuietZones has no effect with this barcode.

92.3.18 Zend\Barcode\Object\Upce

1"234567

This barcode extends Zend\Barcode\Object\Upca (UPC-A), and inherits some of its capabilities; it also has a
few particulars of its own. The first character of the text to encode is the system (0 or 1).

e Name: UPC-E (Universal Product Code)

* Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

* Length: 8 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 8, Zend\Barcode\Object \Upce will automatically prepend
missing zeros to the barcode text.

Note: If the first character of the text to encode is not 0 or 1, Zend\Barcode\Object \Upce will automatically
replace it by 0.

The option withQuietZones has no effect with this barcode.

342 Chapter 92. Zend\Barcode Objects

CHAPTER 93

Zend\Barcode Renderers

Renderers have some common options. These options can be set in three ways:

* As an array or a Traversable object passed to the constructor.

* As an array passed to the setOptions () method.

* As discrete values passed to individual setters.

Different ways to parameterize a renderer object

use Zend\Barcode\Renderer;
Soptions = array(’topOffset’ => 10);

// Case 1
Srenderer = new Renderer\Pdf (Soptions);

// Case 2
Srenderer = new Renderer\Pdf ();
Srenderer—->setOptions ($options);
// Case 3

Srenderer = new Renderer\Pdf ();

93.1 Common Options

In the following list, the values have no unit; we will use the term “unit.” For example, the default value of the “thin
bar” is “1 unit.” The real units depend on the rendering support. The individual setters are obtained by uppercasing the
initial letter of the option and prefixing the name with “set” (e.g. “barHeight” => “setBarHeight”). All options have a
correspondent getter prefixed with “get” (e.g. “getBarHeight”). Available options are:

343

http://php.net/traversable

Zend Framework 2 Documentation, Release 2.3.5

Table 93.1: Common Options

Option Data Default Description
Type Value

render- String Zend\Barcodd\enekprace of the renderer; for example, if you need to extend the

erNames- renderers

pace

horizon- String “left” Can be “left”, “center” or “right”. Can be useful with PDF or if the

talPosi- setWidth() method is used with an image renderer.

tion

vertical- String “top” Can be “top”, “middle” or “bottom”. Can be useful with PDF or if the

Position setHeight() method is used with an image renderer.

leftOffset | Integer 0 Top position of the barcode inside the renderer. If used, this value will
override the “horizontalPosition” option.

topOffset | Integer 0 Top position of the barcode inside the renderer. If used, this value will
override the “verticalPosition” option.

automati- | Boolean | FALSE Whether or not to automatically render errors. If an exception occurs, the

cRender- provided barcode object will be replaced with an Error representation.

Error Note that some errors (or exceptions) can not be rendered.

module- Float 1 Size of a rendering module in the support.

Size

barcode Zend\BarcodNDbject The barcode object to render.

An additional getter exists: getType (). It returns the name of the renderer class without the namespace (e.g.
Zend\Barcode\Renderer\ Image returns “image”).

93.2 Zend\Barcode\Renderer\Image

The Image renderer will draw the instruction list of the barcode object in an image resource. The component requires
the GD extension. The default width of a module is 1 pixel.

Auvailable options are:

Table 93.2: Zend\Barcode\Renderer\Image Options

Option | Data Default Description
Type Value

height Integer 0 Allow you to specify the height of the result image. If “0”, the height will be
calculated by the barcode object.

width Integer | O Allow you to specify the width of the result image. If “0”, the width will be
calculated by the barcode object.

im- String “png” Specify the image format. Can be “png”, “jpeg”, “jpg” or “gif”.

ageType

93.3 Zend\Barcode\Renderer\Pdf

The PDF renderer will draw the instruction list of the barcode object in a PDF document. The default width of a
module is 0.5 point.

There are no particular options for this renderer.

344 Chapter 93. Zend\Barcode Renderers

CHAPTER 94

Zend\Cache\Storage\Adapter

94.1 Overview

Storage adapters are wrappers for real storage resources such as memory and the filesystem, using the
well known adapter pattern.

They come with tons of methods to read, write and modify stored items and to get information about
stored items and the storage.

All adapters implement the interface Zend\Cache\Storage\StorageInterface and most ex-
tend Zend\Cache\Storage\Adapter\AbstractAdapter, which comes with basic logic.

Configuration is handled by either Zend\Cache\Storage\Adapter\AdapterOptions, or an
adapter-specific options class if it exists. You may pass the options instance to the class at instantiation
or via the setOptions () method, or alternately pass an associative array of options in either place
(internally, these are then passed to an options class instance). Alternately, you can pass either the options
instance or associative array to the Zend\Cache\StorageFactory: : factory method.

Note: Many methods throw exceptions

Because many caching operations throw an exception on error, you need to catch them manually or you can use the
plug-in Zend\Cache\Storage\Plugin\ExceptionHandler with throw_exceptions setto false to
automatically catch them. You can also define an exception_callback to log exceptions.

94.2 Quick Start

Caching adapters can either be created from the provided Zend\Cache\StorageFactory factory,
or by simply instantiating one of the Zend\Cache\Storage\Adapter\x classes.

To make life easier, the Zend\Cache\StorageFactory comes with a factory method to create
an adapter and create/add all requested plugins at once.

use Zend\Cache\StorageFactory;

// Via factory:

Scache = StorageFactory::factory (array (
"adapter’ => array (
"name’ => "apc’,

"options’ => array(’'ttl’ => 3600),
),

345

Zend Framework 2 Documentation, Release 2.3.5

"plugins’ => array (
"exception_handler’ => array(’throw_exceptions’ => false),
)I
)) i

// Alternately:

Scache = StorageFactory::adapterFactory(’apc’, array(’'ttl’ => 3600));

splugin = StorageFactory::pluginFactory (’exception_handler’, array (
"throw_exceptions’ => false,

)i
$cache->addPlugin ($plugin);

// Or manually:
Scache = new Zend\Cache\Storage\Adapter\Apc () ;
Scache->getOptions () —>setTtl (3600);

lugin = new Zend\Cache\Storage\Plugin\ExceptionHandler () ;
ugin—->getOptions () —>setThrowExceptions (false);
Scache->addPlugin (Splugin) ;

94.3 Basic Configuration Options

Basic configuration is handled by either Zend\Cache\Storage\Adapter\AdapterOptions, or
an adapter-specific options class if it exists. You may pass the options instance to the class at instantiation
or via the setOptions () method, or alternately pass an associative array of options in either place
(internally, these are then passed to an options class instance). Alternately, you can pass either the options
instance or associative array to the Zend\Cache\StorageFactory: : factory method.

The following configuration options are defined by Zend\Cache\Storage\Adapter\AdapterOptions
and are available for every supported adapter. Adapter-specific configuration options are described on
adapter level below.

Option Data Type Default Description

Value
ttl integer 0 Time to live
namespace | string “zfcache” The “namespace” in which cache items will

live

key_pattern | null ‘| *‘string| null Pattern against which to validate cache keys
readable boolean true Enable/Disable reading data from cache
writable boolean true Enable/Disable writing data to cache

94.4 The Storagelnterface

The Zend\Cache\Storage\StorageInterface is the basic interface implemented by all storage adapters.

getItem (string $key, boolean & $success = null, mixed & $casToken = null)
Load an item with the given $key.

If item exists set parameter $success to t rue, set parameter $casToken and returns mixed value of item.
If item can’t load set parameter $success to false and returns null.

Return type mixed

346 Chapter 94. Zend\Cache\Storage\Adapter

Zend Framework 2 Documentation, Release 2.3.5

getItems (array $keys)
Load all items given by $keys returning key-value pairs.

Return type array

hasItem (string $key)
Test if an item exists.

Return type boolean

hasItems (array $keys)
Test multiple items.

Return type string|[]

getMetadata (string $key)
Get metadata of an item.

Return type arraylboolean

getMetadatas (array $keys)
Get multiple metadata.

Return type array

setItem (string $key, mixed $value)
Store an item.

Return type boolean

setItems (array $keyValuePairs)
Store multiple items.

Return type boolean

addItem (string $key, mixed $value)
Add an item.

Return type boolean

addItems (array $keyValuePairs)
Add multiple items.

Return type boolean

replaceltem (string $key, mixed $value)
Replace an item.

Return type boolean

replaceItems (array $keyValuePairs)
Replace multiple items.

Return type boolean

checkAndSet Item (mixed $token, string $key, mixed $value)
Set item only if token matches. It uses the token received from getItem () to check if the item has changed
before overwriting it.

Return type boolean

touchItem (string $key)
Reset lifetime of an item.

Return type boolean

94.4. The Storagelnterface 347

Zend Framework 2 Documentation, Release 2.3.5

touchItems (array $keys)
Reset lifetime of multiple items.

Return type boolean

removeltem (string $key)
Remove an item.

Return type boolean

removeItems (array $keys)
Remove multiple items.

Return type boolean

incrementItem (string $key, int $value)
Increment an item.

Return type integerlboolean

incrementItems (array $keyValuePairs)
Increment multiple items.

Return type boolean

decrementItem (string $key, int $value)
Decrement an item.

Return type integerlboolean

decrementItems (array $keyValuePairs)
Decrement multiple items.

Return type boolean

getCapabilities ()
Capabilities of this storage.

Return type Zend\Cache\Storage\Capabilities

94.5 The AvailableSpaceCapablelnterface

The Zend\Cache\Storage\AvailableSpaceCapableInterface implements a method to make it possi-
ble getting the current available space of the storage.

getAvailableSpace ()
Get available space in bytes.

Return type integerlfloat

94.6 The TotalSpaceCapablelnterface

The Zend\Cache\Storage\TotalSpaceCapableInterface implements a method to make it possible get-
ting the total space of the storage.

getTotalSpace ()
Get total space in bytes.

Return type integerlfloat

348 Chapter 94. Zend\Cache\Storage\Adapter

Zend Framework 2 Documentation, Release 2.3.5

94.7 The ClearByNamespacelnterface

The Zend\Cache\Storage\ClearByNamespaceInterface implements a method to clear all items of a
given namespace.

clearByNamespace (string $namespace)
Remove items of given namespace.

Return type boolean

94.8 The ClearByPrefixinterface

The Zend\Cache\Storage\ClearByPrefixInterface implements a method to clear all items of a given
prefix (within the current configured namespace).

clearByPrefix (string $prefix)
Remove items matching given prefix.

Return type boolean

94.9 The ClearExpiredinterface

The Zend\Cache\Storage\ClearExpiredInterface implements a method to clear all expired items
(within the current configured namespace).

clearExpired ()
Remove expired items.

Return type boolean

94.10 The Flushablelnterface

The Zend\Cache\Storage\FlushableInterface implements a method to flush the complete storage.

flush ()
Flush the whole storage.

Return type boolean

94.11 The lterablelnterface

The Zend\Cache\Storage\IterableInterface implements a method to get an iterator to iterate over items
of the storage. It extends IteratorAggregate so it’s possible to directly iterate over the storage using foreach.

getlIterator ()
Get an Iterator.

Return type Zend\Cache\Storage\lteratorInterface

94.7. The ClearByNamespacelnterface 349

Zend Framework 2 Documentation, Release 2.3.5

94.12 The Optimizablelnterface

The Zend\Cache\Storage\OptimizableInterface implements a method to run optimization processes on
the storage.

optimize ()
Optimize the storage.

Return type boolean

94.13 The Taggablelnterface

The Zend\Cache\Storage\TaggableInterface implements methods to mark items with one or more tags
and to clean items matching tags.

setTags (string $key, string[] $tags)
Set tags to an item by given key. (An empty array will remove all tags)

Return type boolean

getTags (string $key)
Get tags of an item by given key.

Return type string[]lfalse

clearByTags (string[] $tags, boolean $disjunction = false)
Remove items matching given tags.

If $disjunction is t rue only one of the given tags must match else all given tags must match.

Return type boolean

94.14 The Apc Adapter

The Zend\Cache\Storage\Adapter\Apc adapter stores cache items in shared memory through
the required PHP extension APC (Alternative PHP Cache).

This adapter implements the following interfaces:
e Zend\Cache\Storage\StorageInterface
¢ Zend\Cache\Storage\AvailableSpaceCapableInterface
* Zend\Cache\Storage\ClearByNamespaceInterface
e Zend\Cache\Storage\ClearByPrefixInterface
e Zend\Cache\Storage\FlushableInterface
e Zend\Cache\Storage\IterableInterface

e Zend\Cache\Storage\TotalSpaceCapablelInterface

350 Chapter 94. Zend\Cache\Storage\Adapter

http://pecl.php.net/package/APC

Zend Framework 2 Documentation, Release 2.3.5

Table 94.1: Capabilities

Capability Value
supportedDatatypes | null, boolean, integer, double, string, array (serialized), object
(serialized)
supportedMetadata internal_key, atime, ctime, mtime, rtime, size, hits, ttl
minTtl 1
maxTtl 0
staticTtl true
ttlPrecision 1
useRequestTime <ini value of apc.use_request_time>
expiredRead false
maxKeyLength 5182
namespacelsPrefix true
namespaceSepara- <Option value of namespace_separator>
tor
Table 94.2: Adapter specific options
Name Data Type | Default Value | Description
namespace_separator | string 7 A separator for the namespace and prefix

94.15 The Dba Adapter

The Zend\Cache\Storage\Adapter\Dba adapter stores cache items into dbm like databases us-
ing the required PHP extension dba.

This adapter implements the following interfaces:

* Zend\Cache\Storage\StoragelInterface

* Zend\Cache\Storage\AvailableSpaceCapableInterface

* Zend\Cache\Storage\ClearByNamespacelInterface

* Zend\Cache\Storage\ClearByPrefixInterface

e Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\IterableInterface

e Zend\Cache\Storage\OptimizableInterface

¢ Zend\Cache\Storage\TotalSpaceCapableInterface

94.15. The Dba Adapter

351

http://en.wikipedia.org/wiki/Dbm
http://php.net/manual/book.dba.php

Zend Framework 2 Documentation, Release 2.3.5

Table 94.3: Capabilities

Capability Value
supported- string,null =>string,boolean=>string, integer =>string, double =>
Datatypes string
supportedMeta- <none>
data
minTtl 0
maxKeyLength 0
namespacelsPre- true
fix
namespaceSepara- | <Option value of namespace_separator>
tor
Table 94.4: Adapter specific options
Name Data Default Description
Type Value
names- string | 77 A separator for the namespace and prefix
pace_separator
pathname string | Pathname to the database file
mode string | “c” The mode to open the database Please read dba_open for more
information
handler string | “flatfile” The name of the handler which shall be used for accessing the
database.

Note: This adapter doesn’t support automatically expire items

Because of this adapter doesn’t support automatically expire items it’s very important to clean outdated items by self.

94.16 The Filesystem Adapter

The Zend\Cache\Storage\Adapter\Filesystem adapter stores cache items into the filesys-

tem.

This adapter implements the following interfaces:

* Zend\Cache\Storage\StoragelInterface

* Zend\Cache\Storage\AvailableSpaceCapableInterface

e Zend\Cache\Storage\ClearByNamespacelInterface

e Zend\Cache\Storage\ClearByPrefixInterface

* Zend\Cache\Storage\ClearExpiredInterface

e Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\IterableInterface

e Zend\Cache\Storage\OptimizableInterface

e Zend\Cache\Storage\TaggableInterface

e Zend\Cache\Storage\TotalSpaceCapablelInterface

352

Chapter 94. Zend\Cache\Storage\Adapter

http://php.net/manual/function.dba-open.php

Zend Framework 2 Documentation, Release 2.3.5

Table 94.5: Capabilities

Capability Value
supported- string,null =>string,boolean=>string, integer =>string, double =>
Datatypes string
supportedMeta- mtime, filespec, atime, ctime
data
minTtl 1
maxTtl 0
staticTtl false
ttlPrecision 1
useRequestTime false
expiredRead true
maxKeyLength 251
namespacelsPre- true
fix
namespaceSepara- | <Option value of namespace_separator>
tor
Table 94.6: Adapter specific options
Name Data Type Default Value Description
names- string 7 A separator for the namespace and prefix
pace_separator
cache_dir string “r Directory to store cache files
clear_stat_cache boolean true Call clearstatcache () enabled?
dir_level integer 1 Defines how much sub-directories should be
created
dir_permission integer 0700 Set explicit permission on creating new
false directories
file_locking boolean true Lock files on writing
file_permission integer 0600 Set explicit permission on creating new files
false
key_pattern string /" [a=z0-9_\+\-1*$/D¥alidate key against pattern
no_atime boolean true Don’t get ‘fileatime’ as ‘atime’ on metadata
no_ctime boolean true Don’t get ‘filectime’ as ‘ctime’ on metadata
umask integer false Use umask to set file and directory
false permissions

94.17 The Memcached Adapter

The Zend\Cache\Storage\Adapter\Memcached adapter stores cache items over the mem-
cached protocol. It’s using the required PHP extension memcached which is based on Libmemcached.

This adapter implements the following interfaces:
e Zend\Cache\Storage\StorageInterface
e Zend\Cache\Storage\AvailableSpaceCapableInterface
* Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\TotalSpaceCapableInterface

94.17. The Memcached Adapter 353

http://wikipedia.org/wiki/Umask
http://pecl.php.net/package/memcached
http://libmemcached.org/

Zend Framework 2 Documentation, Release 2.3.5

Table 94.7: Capabilities

Capability Value
supportedDatatypes | null, boolean, integer, double, string, array (serialized), object
(serialized)

supportedMetadata | <none>

minTtl 1

maxTtl 0

staticTtl true

ttIPrecision 1

useRequestTime false

expiredRead false

maxKeyLength 255

namespacelsPrefix true

namespaceSepara- <none>

tor

Table 94.8: Adapter specific options
Name| Data | De- Description
Type | fault
Value

servers| array| [] List of servers in [] = array(st ring host, integer port)

lib_optioaxray| [] Associative array of Libmemcached options were the array key is the option name
(without the prefix “OPT_") or the constant value. The array value is the option value
Please read this<http://php.net/manual/memcached.setoption.php> for more
information

94.18 The Redis Adapter

The Zend\Cache\Storage\Adapter\Redis adapter stores cache items over the redis protocol.
It’s using the required PHP extension redis.

This adapter implements the following interfaces:
e Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\TotalSpaceCapablelInterface

Table 94.9: Capabilities

Capability Value
supportedDatatypes | string, array (serialized), object (serialized)
supportedMetadata <none>
minTtl 1
maxTtl 0
staticTtl true
ttlPrecision 1
useRequestTime false
expiredRead false
maxKeyLength 255
namespacelsPrefix true
namespaceSeparator | <none>

354 Chapter 94. Zend\Cache\Storage\Adapter

http://php.net/manual/memcached.setoption.php
https://github.com/nicolasff/phpredis

Zend Framework 2 Documentation, Release 2.3.5

Table 94.10: Adapter specific options

Name Data Type Default Value Description

database integer 0 Set database identifier

lib_option array [1] Associative array of redis
options were the array key
is the option name

namespace_separator string 7 A separator for the names-
pace and prefix

password string “? Set password

persistent_id string Set persistant id (RDB,
AOF)

resource_manager string Set the redis resource man-

ager to use

Servers

Server can be described as {

e URIL
/path/to/sock.sock

¢ Assoc: ar-
ray(‘host” =>
<host>[, ‘port’
=> <port>[,

‘timeout’ =>
<timeout>]])

e List: ar-
ray(<host>[,
<port>, [,
<timeout>]])

follows:

\

94.19 The Memory Adapter

The Zend\Cache\Storage\Adapter\Memory adapter stores cache items into the PHP process

using an array.

This adapter implements the following interfaces:

* Zend\Cache\Storage\StoragelInterface

e Zend\Cache\Storage\AvailableSpaceCapableInterface

* Zend\Cache\Storage\ClearByPrefixInterface

* Zend\Cache\Storage\ClearExpiredInterface

e Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\IterableInterface

e Zend\Cache\Storage\TaggableInterface

¢ Zend\Cache\Storage\TotalSpaceCapablelInterface

94.19. The Memory Adapter

355

Zend Framework 2 Documentation, Release 2.3.5

Table 94.11: Capabilities

Capability Value
supportedDatatypes | string, null, boolean, integer, double, array, object, resource
supportedMetadata | mtime
minTtl 1
maxTtl <Value of PHP_ INT_ MAX>
staticTtl false
ttIPrecision 0.05
useRequestTime false
expiredRead true
maxKeyLength 0
namespacelsPrefix false
Table 94.12: Adapter specific options
Name Data Type Default Value Description

memory_limit

string integer

<50% of ini

memory_limit>

value

Limit of how much memory
can PHP allocate to allow
store items into this adapter

o If the used mem-
ory of PHP exceeds
this limit an OutOf-
SpaceException will
be thrown.

* A number less or
equal O will disable
the memory limit

* When a number is
used, the value is
measured in bytes
(Shorthand notation
may also be used)

Note: All stored items will be lost after terminating the script.

94.20 The WinCache Adapter

The Zend\Cache\Storage\Adapter\WinCache adapter stores cache items into shared memory
through the required PHP extension WinCache.

This adapter implements the following interfaces:

e Zend\Cache\Storage\StorageInterface

¢ Zend\Cache\Storage\AvailableSpaceCapableInterface

* Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\TotalSpaceCapableInterface

356

Chapter 94. Zend\Cache\Storage\Adapter

http://pecl.php.net/package/WinCache

Zend Framework 2 Documentation, Release 2.3.5

Table 94.13: Capabilities

Capability Value
supportedDatatypes | null, boolean, integer, double, string, array (serialized), object
(serialized)
supportedMetadata internal_key, ttl, hits, size
minTtl 1
maxTtl 0
staticTtl true
ttIPrecision 1
useRequestTime <ini value of apc.use_request_time>
expiredRead false
namespacelsPrefix true
namespaceSepara- <Option value of namespace_separator>
tor
Table 94.14: Adapter specific options
Name Data Type | Default Value | Description

namespace_separator

99,99

string A separator for the namespace and prefix

94.21 The XCache Adapter

The Zend\Cache\Storage\Adapter\XCache adapter stores cache items into shared memory
through the required PHP extension XCache.

This adapter implements the following interfaces:
e Zend\Cache\Storage\StorageInterface
e Zend\Cache\Storage\AvailableSpaceCapableInterface
* Zend\Cache\Storage\ClearByNamespaceInterface
e Zend\Cache\Storage\ClearByPrefixInterface
e Zend\Cache\Storage\FlushableInterface
e Zend\Cache\Storage\IterableInterface

* Zend\Cache\Storage\TotalSpaceCapableInterface

Table 94.15: Capabilities

Capability Value

supportedDatatypes | boolean, integer, double, string, array (serialized), object (serialized)

supportedMetadata internal_key, size, refcount, hits, ctime, atime, hvalue

minTtl 1

maxTtl <ini value of xcache.var_maxttl>
staticTtl true

ttlPrecision 1

useRequestTime true

expiredRead false

maxKeyLength 5182

namespacelsPrefix true

namespaceSeparator | <Option value of namespace_separator>

94.21. The XCache Adapter

357

http://xcache.lighttpd.net/

Zend Framework 2 Documentation, Release 2.3.5

Table 94.16: Adapter specific options

Name Data | De- Description
Type | fault
Value

names- string™:” A separator for the namespace and prefix

pace_separdtor

ad- boolgafialse | Enable admin authentication by configuration options admin_user and

min_auth admin_pass
This makes XCache administration functions accessible if
xcache.admin.enable_auth is enabled without the need of
HTTP-Authentication.

ad- string”’ The username of xcache.admin.user

min_user

ad- string®”’ The password of xcache.admin.pass in plain text

min_pass

94.22 The ZendServerDisk Adapter

This Zend\Cache\Storage\Adapter\ZendServerDisk adapter stores cache items on filesys-
tem through the Zend Server Data Caching API.

This adapter implements the following interfaces:

e Zend\Cache\Storage\StorageInterface

¢ Zend\Cache\Storage\AvailableSpaceCapableInterface

e Zend\Cache\Storage\ClearByNamespacelnterface

e Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\TotalSpaceCapablelInterface

Table 94.17: Capabilities

Capability Value
supportedDatatypes | null, boolean, integer, double, string, array (serialized), object
(serialized)
supportedMetadata | <none>
minTtl 1
maxTtl 0
maxKeyLength 0
staticTtl true
ttlPrecision 1
useRequestTime false
expiredRead false
namespacelsPrefix true
namespaceSepara-
tor
358 Chapter 94. Zend\Cache\Storage\Adapter

http://xcache.lighttpd.net/
http://www.zend.com/en/products/server/

Zend Framework 2 Documentation, Release 2.3.5

94.23 The ZendServerShm Adapter

The Zend\Cache\Storage\Adapter\ZendServerShm adapter stores cache items in shared

memory through the Zend Server Data Caching API.

This adapter implements the following interfaces:

e Zend\Cache\Storage\StorageInterface

* Zend\Cache\Storage\ClearByNamespaceInterface

e Zend\Cache\Storage\FlushableInterface

e Zend\Cache\Storage\TotalSpaceCapableInterface

Table 94.18: Capabilities

Capability Value
supportedDatatypes | null, boolean, integer, double, string, array (serialized), object
(serialized)
supportedMetadata | <none>
minTtl 1
maxTtl 0
maxKeyLength 0
staticTtl true
ttIPrecision 1
useRequestTime false
expiredRead false
namespacelsPrefix true
namespaceSepara-
tor
94.24 Examples
Basic usage
$Scache = \Zend\Cache\StorageFactory: :factory (array (
"adapter’ => array(
"name’ => ’'filesystem’

)y
"plugins’ =

> array (

// Don’t throw exceptions on cache errors

"except
"th
),

= "uniqg

sUu
ache->set

ion_handler’
row_exceptions’

ue—cache-key’;

che->getItem($Skey,

{

Item(Skey,

=> array (

=> false

Ssuccess) ;

doExpensiveStuff () ;
Sresult);

94.23. The ZendServerShm Adapter

359

http://www.zend.com/en/products/server/

20

21

22

23

24

25

26

27

28

29

30

32

33

35

36

38

Zend Framework 2 Documentation, Release 2.3.5

Get multiple rows from db

// Instantiate the cache instance using a namespace for the same type of items

Scache = \Zend\Cache\StorageFactory::factory (array (
"adapter’ => array (
"name’ => 'filesystem’

// With a namespace we can indicate the same type of items
// —> So we can simple use the db id as cache key
"options’ => array (
"namespace’ => ’"dbtable’
)I
)I
"plugins’ => array (
// Don’t throw exceptions on cache errors
"exception_handler’ => array (
"throw_exceptions’ => false
)I
// We store database rows on filesystem so we need to serialize them
"Serializer’

)) i

// Load two rows from cache if possible
$ids = array(l, 2);
Sresults = Scache->getItems ($ids);
if (count (Sresults) < count ($ids)) {
// Load rows from db if loading from cache failed

SmissingIds = array_diff($ids, array_keys(Sresults));
SmissingResults = array();
Squery = 'SELECT % FROM dbtable WHERE id IN (’ . implode(’,’, S$missingIds)
foreach ($pdo->query(Squery, PDO::FETCH_ASSOC) as Srow) {
SmissingResults[Srow[’id’]] = Srow;

// Update cache items of the loaded rows from db
Scache->setItems ($SmissingResults);

// merge results from cache and db
Sresults = array_merge (Sresults, S$missingResults);

360 Chapter 94. Zend\Cache\Storage\Adapter

I)I,.

CHAPTER 95

Zend\Cache\Storage\Capabilities

95.1 Overview

Storage capabilities describes how a storage adapter works and which features it supports.

To get capabilities of a storage adapter, you can use the method getCapabilities () of the storage adapter but
only the storage adapter and its plugins have permissions to change them.

Because capabilities are mutable, for example, by changing some options, you can subscribe to the “change” event to
get notifications; see the examples for details.

If you are writing your own plugin or adapter, you can also change capabilities because you have access to the marker
object and can create your own marker to instantiate a new object of Zend\Cache\Storage\Capabilities.

95.2 Available Methods

__construct (Zend\Cache\Storage\Storagelnterface $storage, stdClass $marker, array $capabilities = ar-

ray(), Zend\Cache\Storage\Capabilities\null $baseCapabilities = null)
Constructor

getSupportedDatatypes ()
Get supported datatypes.

Return type array

setSupportedDatatypes (stdClass $marker, array $datatypes)
Set supported datatypes.

Return type Zend\Cache\Storage\Capabilities

getSupportedMetadata ()
Get supported metadata.

Return type array

setSupportedMetadata (stdClass $marker, string $metadata)
Set supported metadata.

Return type Zend\Cache\Storage\Capabilities

getMinTt1 ()
Get minimum supported time-to-live.

(Returning 0 means items never expire)

361

Zend Framework 2 Documentation, Release 2.3.5

Return type integer

setMinTt1l (stdClass $marker, int $minTtl)
Set minimum supported time-to-live.

Return type Zend\Cache\Storage\Capabilities

getMaxTtl ()
Get maximum supported time-to-live.

Return type integer

setMaxTtl (stdClass $marker, int $maxTtl)
Set maximum supported time-to-live.

Return type Zend\Cache\Storage\Capabilities

getStaticTtl ()
Is the time-to-live handled static (on write), or dynamic (on read).

Return type boolean

setStaticTtl (stdClass $marker, boolean $flag)

Set if the time-to-live is handled statically (on write) or dynamically (on read).

Return type Zend\Cache\Storage\Capabilities

getTtlPrecision ()
Get time-to-live precision.

Return type float

setTtlPrecision (stdClass $marker, float $ttlPrecision)
Set time-to-live precision.

Return type Zend\Cache\Storage\Capabilities

getUseRequestTime ()
Get the “use request time” flag status.

Return type boolean

setUseRequestTime (stdClass $marker, boolean $flag)
Set the “use request time” flag.

Return type Zend\Cache\Storage\Capabilities

getExpiredRead ()
Get flag indicating if expired items are readable.

Return type boolean

setExpiredRead (stdClass $marker, boolean $flag)
Set if expired items are readable.

Return type Zend\Cache\Storage\Capabilities

getMaxKeyLength ()
Get maximum key length.

Return type integer

setMaxKeyLength (stdClass $marker, int $maxKeyLength)
Set maximum key length.

Return type Zend\Cache\Storage\Capabilities

362 Chapter 95

. Zend\Cache\Storage\Capabilities

Zend Framework 2 Documentation, Release 2.3.5

getNamespaceIsPrefix ()
Get if namespace support is implemented as a key prefix.

Return type boolean

setNamespacelIsPrefix (stdClass $marker, boolean $flag)
Set if namespace support is implemented as a key prefix.

Return type Zend\Cache\Storage\Capabilities

getNamespaceSeparator ()
Get namespace separator if namespace is implemented as a key prefix.

Return type string

setNamespaceSeparator (stdClass $marker, string $separator)
Set the namespace separator if namespace is implemented as a key prefix.

Return type Zend\Cache\Storage\Capabilities

95.3 Examples

Get storage capabilities and do specific stuff in base of it

use Zend\Cache\StorageFactory;

Scache = StorageFactory::adapterFactory (' filesystem’);
$supportedDatatypes = $cache->getCapabilities()->getSupportedDatatypes|();

// now you can run specific stuff in base of supported feature
if (SsupportedDatatypes[’object’]) {
he->set (Skey, S$object);

&~

} else {
Scache->set (Skey, serialize(Sobject));

Listen to change event

use Zend\Cache\StorageFactory;

Scache = StorageFactory::adapterFactory(’filesystem’, array(
"no_atime’ => false,

)) i

// Catching capability changes
Scache->getEventManager () —>attach (' capability’, function (Sevent) {
echo count ($event->getParams()) . ' capabilities changed’;

1)

// change option which changes capabilities
Scache->getOptions () —>setNoATime (true) ;

95.3. Examples

363

Zend Framework 2 Documentation, Release 2.3.5

364 Chapter 95. Zend\Cache\Storage\Capabilities

CHAPTER 96

Zend\Cache\Storage\Plugin

96.1 Overview

Cache storage plugins are objects to add missing functionality or to influence behavior of a storage adapter.

The plugins listen to events the adapter triggers and can change called method arguments (*.post
- events), skipping and directly return a result (using stopPropagation), changing the re-
sult (with setResult of Zend\Cache\Storage\PostEvent) and catching exceptions (with
Zend\Cache\Storage\ExceptionEvent).

96.2 Quick Start

Storage plugins can either be created from Zend\Cache\StorageFactory with the pluginFactory, or by
simply instantiating one of the Zend\Cache\Storage\Plugin\ xclasses.

To make life easier, the Zend\Cache\StorageFactory comes with the method factory to create an adapter
and all given plugins at once.

use Zend\Cache\StorageFactory;

// Via factory:

Scache = StorageFactory::factory (array (
"adapter’ => ’'filesystem’,
"plugins’ => array(’serializer’),

)) i

// Alternately:

che = StorageFactory::adapterFactory(’filesystem’);
ugin = StorageFactory::pluginFactory (’serializer’);
$cache->addPlugin ($plugin) ;

&~
$c

// Or manually:

Scache = new Zend\Cache\Storage\Adapter\Filesystem();
splugin = new Zend\Cache\Storage\Plugin\Serializer ();
Scache->addPlugin (Splugin);

365

Zend Framework 2 Documentation, Release 2.3.5

96.3 The ClearExpiredByFactor Plugin

The Zend\Cache\Storage\Plugin\ClearExpiredByFactor plugin calls the storage method
clearExpired () randomly (by factor) after every call of setItem (), setItems (),addItem ()
and addItems ().

Table 96.1: Plugin specific options

Name Data Type | Default Value | Description
clearing_factor | integer 0 The automatic clearing factor

Note: The ClearExpiredInterface is required

The storage have to implement the Zend\Cache\Storage\ClearExpiredInterface to work with this plu-
gin.

96.4 The ExceptionHandler Plugin

The Zend\Cache\Storage\Plugin\ExceptionHandler plugin catches all exceptions thrown
on reading or writing to cache and sends the exception to a defined callback function.

It’s configurable if the plugin should re-throw the catched exception.

Table 96.2: Plugin specific options

Name Data Type Default Description
Value
excep- callable null Callback will be called on an exception and get the
tion_callback null exception as argument
throw_exceptiony boolean true Re-throw catched exceptions

96.5 The IgnoreUserAbort Plugin

The Zend\Cache\Storage\Plugin\IgnoreUserAbort plugin ignores script terminations by
users until write operations to cache finished.

Table 96.3: Plugin specific options

Name Data Type | Default Value | Description
exit_on_abort | boolean true Terminate script execution if user abort the script

96.6 The OptimizeByFactor Plugin

The Zend\Cache\Storage\Plugin\OptimizeByFactor plugin calls the storage method
optimize () randomly (by factor) after removing items from cache.

Table 96.4: Plugin specific options

Name Data Type | Default Value | Description
optimizing_factor | integer 0 The automatic optimization factor

Note: The OptimizableInterface is required

366 Chapter 96. Zend\Cache\Storage\Plugin

Zend Framework 2 Documentation, Release 2.3.5

The storage have to implement the Zend\Cache\Storage\OptimizableInterface to work with this plugin.

96.7 The Serializer Plugin

The Zend\Cache\Storage\Plugin\Serializer plugin will serialize data on writing to cache
and unserialize on reading. So it’s possible to store different datatypes into cache storages only support

strings.
Table 96.5: Plugin specific options
Name Data Type Default Value Description
serializer null string | null The serializer to use

Zend\Serializer\Adag

ter\AdapterInterface

e If null use the de-
fault serializer

e If string instanti-
ate the serializer with
serializer_opti

pNns

serializer_options

array

Array of serializer options
used to instantiate the seri-
alizer

96.8 Available Methods

setOptions (Zend\Cache\Storage\Plugin\PluginOptions $options)

Set options.

Return type Zend\Cache\Storage\Plugin\PluginInterface

getOptions ()
Get options.

Return type Zend\Cache\Storage\Plugin\PluginOptions

attach (Zend\EventManager\EventManagerInterface $events)
Defined by Zend\EventManager\ListenerAggregateInterface, attach one or more listeners.

Return type void

detach (Zend\EventManage\EventManagerInterface $events)
Defined by Zend\EventManager\ListenerAggregateInterface, detach all previously attached

listeners.

Return type void

96.9 Examples

Basics of writing an own storage plugin

96.7. The Serializer Plugin

367

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Zend Framework 2 Documentation, Release 2.3.5

use Zend\Cache\Storage\Event;
use Zend\Cache\Storage\Plugin\AbstractPlugin;
use Zend\EventManager\EventManagerInterface;

class MyPlugin extends AbstractPlugin
{

protected Shandles = array();

// This method have to attach all events required by this plugin
public function attach (EventManagerInterface Sevents)

{

Sthis->handles[] = Sevents—->attach(’getlItem.pre’, array($this, ’'onGetItemPre’));
Sthis->handles[] = Sevents—->attach(’getItem.post’, array(S$Sthis, ’'onGetItemPost’));

return S$Sthis;

// This method have to detach all events required by this plugin
public function detach (EventManagerInterface Sevents)
{

foreach (Sthis->handles as Shandle) {

Sevents—->detach ($Shandle) ;

}

Sthis->handles = array();

return Sthis;

public function onGetItemPre (Event Sevent)
{
Sparams = Sevent->getParams();
echo sprintf ("Method ’"getItem’ with key ’%s’ started\n", Sparams[’key’]);

public function onGetItemPost (Event Sevent)
{
Sparams = Sevent->getParams();
echo sprintf ("Method ’"getItem’ with key ’%s’ finished\n", Sparams[’key’]);

// After defining this basic plugin we can instantiate and add it to an adapter instance

Splugin = new MyPlugin();
Scache->addPlugin (Splugin);

// Now on calling getItem our basic plugin should print the expected output
Scache->getItem(’ cache-key’);

// Method ’'getItem’ with key ’cache-key’ started

// Method ’"getItem’ with key ’‘cache-key’ finished

368 Chapter 96. Zend\Cache\Storage\Plugin

CHAPTER 97

Zend\Cache\Pattern

97.1 Overview

Cache patterns are configurable objects to solve known performance bottlenecks. Each should be used only in the spe-
cific situations they are designed to address. For example you can use one of the CallbackCache, ObjectCache
or ClassCache patterns to cache method and function calls; to cache output generation, the Out put Cache pattern
could assist.

All cache patterns implement the same interface, Zend\Cache\Pattern\PatternInterface, and most ex-
tend the abstract class Zend\Cache\Pattern\AbstractPattern to implement basic logic.

Configuration is provided via the Zend\Cache\Pattern\PatternOptions class, which can simply be instan-
tiated with an associative array of options passed to the constructor. To configure a pattern object, you can set an
instance of Zend\Cache\Pattern\PatternOptions with setOptions, or provide your options (either as
an associative array or PatternOpt ions instance) as the second argument to the factory.

It’s also possible to use a single instance of Zend\Cache\Pattern\PatternOptions and pass it to multiple
pattern objects.

97.2 Quick Start

Pattern objects can either be created from the provided Zend\Cache\PatternFactory factory, or, by simply
instantiating one of the Zend\Cache\Pattern*Cache classes.

// Via the factory:
ScallbackCache = Zend\Cache\PatternFactory::factory (’callback’, array(
"storage’ => "apc’,

)) i

// OR, the equivalent manual instantiation:

ScallbackCache = new Zend\Cache\Pattern\CallbackCache () ;
Cache->setOptions (new Zend\Cache\Pattern\PatternOptions (array (
"storage’ => ’'apc’,

1))

Scallbac

97.3 Available Methods

The following methods are implemented by Zend\Cache\Pattern\AbstractPattern. Please read docu-
mentation of specific patterns to get more information.

369

Zend Framework 2 Documentation, Release 2.3.5

setOptions (Zend\Cache\Pattern\PatternOptions $options)
Set pattern options.

Return type Zend\Cache\Pattern\PatternInterface

getOptions ()
Get all pattern options.

Return type Zend\Cache\Pattern\PatternOptions

370

Chapter 97. Zend\Cache\Pattern

CHAPTER 98

Zend\Cache\Pattern\CallbackCache

98.1 Overview

The callback cache pattern caches calls of non specific functions and methods given as a callback.

98.2 Quick Start

For instantiation you can use the PatternFactory or do it manual:

use Zend\Cache\PatternFactory;
use Zend\Cache\Pattern\PatternOptions;

// Via the factory:

ScallbackCache = PatternFactory::factory(’callback’, array(
"storage’ => "apc’,
"cache_output’ => true,

)) i

// OR, the equivalent manual instantiation:
ScallbackCache = new \Zend\Cache\Pattern\CallbackCache ();
ScallbackCache->setOptions (new PatternOptions (array (
"storage’ => "apc’,
"cache_output’ => true,
)))

98.3 Configuration Options

Option Data Type Default Description
Value
storage stringarray <none> The storage to write/read
Zend\Cache\Storage\StorageInterface cached data
cache_outpyutboolean true Cache output of callback

371

[S

Zend Framework 2 Documentation, Release 2.3.5

98.4 Available Methods

call (callable $callback, array $args = array())
Call the specified callback or get the result from cache.

Return type mixed

call (string $function, array $args)
Function call handler.

Return type mixed

generateKey (callable $callback, array $args = array())
Generate a unique key in base of a key representing the callback part and a key representing the arguments part.

Return type string

setOptions (Zend\Cache\Pattern\PatternOptions $options)
Set pattern options.

Return type Zend\Cache\Pattern\CallbackCache

getOptions ()
Get all pattern options.

Return type Zend\Cache\Pattern\PatternOptions

98.5 Examples

Instantiating the callback cache pattern

use Zend\Cache\PatternFactory;

ScallbackCache = PatternFactory::factory(’callback’, array(
"storage’ => "apc’

)) i

372 Chapter 98. Zend\Cache\Pattern\CallbackCache

)

o U koW

CHAPTER 99

Zend\Cache\Pattern\ClassCache

99.1 Overview

The ClassCache pattern is an extension to the CallbackCache pattern. It has the same methods but instead it
generates the internally used callback in base of the configured class name and the given method name.

99.2 Quick

Start

Instantiating the class cache pattern

use Zend\Cache\PatternFactory;

SclassCache =

"storage’

)) i

PatternFactory::factory (' class’, array

=> 'MyClass’,
=> "apc’

99.3 Configuration Options

Option Data Type Default | Description
Value
storage stringarray <none> | The storage to write/read cached data
Zend\Cache\Storage\StorageInterface
class string <none> The class name
cache_output boolean true Cache output of callback
cache_by_defaultf boolean true Cache method calls by default
class_cache_methaglsray [] List of methods to cache (If
cache_by_default is disabled)
class_non_cache| mathads [] List of methods to no-cache (If

cache_by_default is enabled)

99.4 Available Methods

call (string $method, array $args = array())

373

R S T

Zend Framework 2 Documentation, Release 2.3.5

Call the specified method of the configured class.

Return type mixed
__call (string $method, array $args)

Call the specified method of the configured class.

Return type mixed
___set (string $name, mixed $value)

Set a static property of the configured class.

Return type void
__get (string $name)

Get a static property of the configured class.

Return type mixed
__isset (string $name)

Checks if a static property of the configured class exists.

Return type boolean
__unset (string $name)

Unset a static property of the configured class.

Return type void

generateKey (string $method, array $args = array())
Generate a unique key in base of a key representing the callback part and a key representing the arguments part.

Return type string

setOptions (Zend\Cache\Pattern\PatternOptions $options)
Set pattern options.

Return type Zend\Cache\Pattern\ClassCache

getOptions ()
Get all pattern options.

Return type Zend\Cache\Pattern\PatternOptions

99.5 Examples

Caching of import feeds

edFeedReader = Zend\Cache\PatternFactory::factory(’class’, array(
class’ => ’Zend\Feed\Reader\Reader’,
"storage’ => ’'apc’,

// The feed reader doesn’t output anything
// so the output don’t need to be caught and cached
"cache_output’ => false,

374 Chapter 99. Zend\Cache\Pattern\ClassCache

Zend Framework 2 Documentation, Release 2.3.5

$feed = S$cachedFeedReader—->call ("import", array(’http://www.planet-php.net/rdf/’));
// OR
$feed = ScachedFeedReader->import ('http://www.planet-php.net/rdf/’");

99.5. Examples 375

Zend Framework 2 Documentation, Release 2.3.5

376 Chapter 99. Zend\Cache\Pattern\ClassCache

)

- o v s oW

cHAPTER 100

Zend\Cache\Pattern\ObjectCache

100.1 Overview

The ObjectCache pattern is an extension to the CallbackCache pattern. It has the same methods but instead it
generates the internally used callback in base of the configured object and the given method name.

100.2 Quick Start

Instantiating the object cache pattern

use Zend\Cache\PatternFactory;

= new stdClass();

> = PatternFactory::factory(’object’, array(
=> S$Sobject,
"storage’ => "apc’
)) i
100.3 Configuration Options
Option Data Type Default Description
Value
storage string array <none> The storage to write/read cached
Zend\Cache\Storage\Storagelnterface data
object object <none> The object to cache methods calls of
object_key null string <Class name | A hopefully unique key of the object
of object>
cache_output boolean true Cache output of callback
cache_by_default | boolean true Cache method calls by default
ob- array [] List of methods to cache (If
ject_cache_methods cache_by_default is disabled)
ob- array [] List of methods to no-cache (If
ject_non_cache_megthods cache_by_default is enabled)
ob- boolean false Cache calls of magic object
ject_cache_magic_|properties properties

377

Zend Framework 2 Documentation, Release 2.3.5

100.4 Available Methods

call (string $method, array $args = array())

Call the specified method of the configured object.

Return type mixed
___call (string $method, array $args)

Call the specified method of the configured object.

Return type mixed
___set (string $name, mixed $value)

Set a property of the configured object.

Return type void
___get (string $name)

Get a property of the configured object.

Return type mixed
__isset (string $name)

Checks if static property of the configured object exists.

Return type boolean
__unset (string $name)

Unset a property of the configured object.

Return type void

generateKey (string $method, array $args = array())

Generate a unique key in base of a key representing the callback part and a key representing the arguments part.

Return type string

setOptions (Zend\Cache\Pattern\PatternOptions $options)
Set pattern options.

Return type Zend\Cache\Pattern\ObjectCache

getOptions ()
Get all pattern options.

Return type Zend\Cache\Pattern\PatternOptions

100.5 Examples

Caching a filter

378 Chapter 100

. Zend\Cache\Pattern\ObjectCache

Zend Framework 2 Documentation, Release 2.3.5

Sfilter = new Zend\Filter\RealPath();

ScachedFilter = Zend\Cache\PatternFactory::factory(’object’, array (
"object’ => S$filter,
"object_key’ => ’"RealpathFilter’,
"storage’ => "apc’,

// The realpath filter doesn’t output anything
// so the output don’t need to be caught and cached
"cache_output’ => false,

)) i

Spath = $cachedFilter—->call ("filter", array(’/www/var/path/../../mypath’));

// OR
Spath = S$cachedFilter->filter (’ /www/var/path/../../mypath’);

100.5. Examples

379

Zend Framework 2 Documentation, Release 2.3.5

380 Chapter 100. Zend\Cache\Pattern\ObjectCache

L S

cHAPTER 101

Zend\Cache\Pattern\OutputCache

101.1 Overview

The OutputCache pattern caches output between calls to start () and end ().

101.2 Quick Start

Instantiating the output cache pattern

use Zend\Cache\PatternFactory;
SoutputCache = PatternFactory::factory(’output’, array(

"storage’ => ’"apc’

)) i

101.3 Configuration Options

Op- Data Type Default Description

tion Value

stor- string array <none> The storage to write/read
age Zend\Cache\Storage\StoragelInterface cached data

101.4 Available Methods

start (string $key)
If there is a cached item with the given key display it’s data and return t rue else start buffering output until
end () is called or the script ends and return false.

Return type boolean

end ()
Stops buffering output, write buffered data to cache using the given key on start () and displays the buffer.

Return type boolean

setOptions (Zend\Cache\Pattern\PatternOptions $options)
Set pattern options.

381

Zend Framework 2 Documentation, Release 2.3.5

Return type Zend\Cache\Pattern\OutputCache

getOptions ()
Get all pattern options.

Return type Zend\Cache\Pattern\PatternOptions

101.5 Examples
Caching simple view scripts

SoutputCache = Zend\Cache\PatternFactory::factory (/output’, array (
"storage’ => ’'apc’,

)) i

SoutputCache->start ('mySimpleViewScript’);
include ' /path/to/view/script.phtml’;
SoutputCache->end () ;

382 Chapter 101. Zend\Cache\Pattern\OutputCache

CcHAPTER 102

Zend\Cache\Pattern\CaptureCache

102.1 Overview

The CaptureCache pattern is useful to auto-generate static resources in base of a HTTP request. The Webserver
needs to be configured to run a PHP script generating the requested resource so further requests for the same resource
can be shipped without calling PHP again.

It comes with basic logic to manage generated resources.

102.2 Quick Start

Simplest usage as Apache-404 handler

.htdocs
ErrorDocument 404 /index.php

// index.php

use Zend\Cache\PatternFactory;

Scapture = Zend\Cache\PatternFactory::factory (’capture’, array (
"public_dir’ => __ _DIR__,

)) i

// Start capturing all output excl. headers and write to public directory
Scapture->start () ;

// Don’t forget to change HITP response code
header (' Status: 200’, true, 200);

// do stuff to dynamically generate output

383

Zend Framework 2 Documentation, Release 2.3.5

102.3 Configuration Options

Option Data Type Default Value Description

public_dir string <none> Location of public directory to write output to

in- string “index.html” The name of the first file if only a directory was

dex_filename requested

file_locking boolean true Locking output files on writing

file_permission integer 0600 (false on Set permissions of generated output files
boolean win)

dir_permission| integer 0700 (false on Set permissions of generated output directories
boolean win)

umask integer false Using umask on generating output files / directories
boolean

102.4 Available Methods

start (stringlnull $pageld = null)
Start capturing output.

Return type void

set (string $content, stringlnull $pageld = null)
Write content to page identity.

Return type void

get (stringlnull $pageld = null)
Get content of an already cached page.

Return type stringlfalse

has (stringlnull $pageld = null)
Check if a page has been created.

Return type boolean

remove (stringlnull $pageld = null)
Remove a page.

Return type boolean

clearByGlob (string $pattern = “**’)
Clear pages matching glob pattern.

Return type void

setOptions (Zend\Cache\Pattern\PatternOptions $options)
Set pattern options.

Return type Zend\Cache\Pattern\CaptureCache

getOptions ()
Get all pattern options.

Return type Zend\Cache\Pattern\PatternOptions

384 Chapter 102

. Zend\Cache\Pattern\CaptureCache

Zend Framework 2 Documentation, Release 2.3.5

102.5 Examples

Scaling images in base of request

.htdocs
ErrorDocument 404 /index.php

// index.php

ScaptureCache = Zend\Cache\PatternFactory::factory (’capture’, array(
"public_dir’ => __ _DIR__,

)) i

// TODO

102.5. Examples 385

Zend Framework 2 Documentation, Release 2.3.5

386 Chapter 102. Zend\Cache\Pattern\CaptureCache

CHAPTER 103

Introduction to Zend\Captcha

CAPTCHA stands for “Completely Automated Public Turing test to tell Computers and Humans Apart”; it is used as
a challenge-response to ensure that the individual submitting information is a human and not an automated process.
Typically, a captcha is used with form submissions where authenticated users are not necessary, but you want to prevent
spam submissions.

103.1 Overview

Captchas can take a variety of forms, including asking logic questions, presenting skewed fonts, and presenting multi-
ple images and asking how they relate. The Zend\Capt cha component aims to provide a variety of back ends that
may be utilized either standalone or in conjunction with the Zend\Form component.

387

http://en.wikipedia.org/wiki/Captcha

Zend Framework 2 Documentation, Release 2.3.5

388 Chapter 103. Introduction to Zend\Captcha

cHAPTER 104

Captcha Operation

104.1 The Adapterinterface

All CAPTCHA adapters implement Zend\Captcha\AdapterInterface, which looks like the following:

namespace Zend\Captcha;
use Zend\Validator\ValidatorInterface;

interface AdapterInterface extends ValidatorInterface

{

public function generate();
public function setName ($name) ;
public function getName () ;

// Get helper name used for rendering this captcha type
public function getHelperName () ;

}

The name setter and getter are used to specify and retrieve the CAPTCHA identifier. The most interesting methods are
generate () and render (). generate () is used to create the CAPTCHA token. This process typically will
store the token in the session so that you may compare against it in subsequent requests. render () is used to render
the information that represents the CAPTCHA, be it an image, a figlet, a logic problem, or some other CAPTCHA.

104.2 Basic Usage

A simple use case might look like the following:

// Originating request:

Scaptcha = new Zend\Captcha\Figlet (array (
"name’ => ’foo’,
"wordLen’ => 6,
"timeout’ => 300,

)) i

$id = Scaptcha->generate();

//this will output a Figlet string
echo S$captcha->getFiglet () ->render ($captcha->getWord()) ;

389

Zend Framework 2 Documentation, Release 2.3.5

// On a subsequent request:
// Assume a captcha setup as before, with corresponding form fields, the value of $_POST[’foo’]
// would be key/value array: id => captcha ID, input => captcha value
if ($Scaptcha->isValid($_POST[’"foo’], $_POST)) {
// Validated!

Note: Under most circumstances, you probably prefer the use of Zend\ Captcha functionality combined with the
power of the Zend\Form component. For an example on how to use Zend\Form\Element\Captcha, have a

look at the Zend\Form Quick Start.

390 Chapter 104. Captcha Operation

cHAPTER 105

CAPTCHA Adapters

The following adapters are shipped with Zend Framework by default.

105.1 Zend\Captcha\AbstractWord

Zend\Captcha\AbstractWord is an abstract adapter that serves as the base class for most other CAPTCHA
adapters. It provides mutators for specifying word length, session 77L and the session container object to use.
Zend\Captcha\AbstractWord also encapsulates validation logic.

By default, the word length is 8 characters, the session timeout is 5 minutes, and Zend\Session\Container is
used for persistence (using the namespace “Zend\Form\Captcha\<captcha ID>").

In addition to the methods required by the Zend\Captcha\AdapterInterface interface,
Zend\Captcha\AbstractWord exposes the following methods:

* setWordLen ($length) and getWordLen () allow you to specify the length of the generated “word” in
characters, and to retrieve the current value.

e setTimeout ($ttl) and getTimeout () allow you to specify the time-to-live of the session token, and to
retrieve the current value. $tt1 should be specified in seconds.

* setUseNumbers ($numbers) and getUseNumbers () allow you to specify if numbers will be consid-
ered as possible characters for the random work or only letters would be used.

* setSessionClass ($class) and getSessionClass () allow you to specify an alternate
Zend\Session\Container implementation to use to persist the CAPTCHA token and to retrieve
the current value.

* getId() allows you to retrieve the current token identifier.

* getWord () allows you to retrieve the generated word to use with the CAPTCHA. It will generate the word for
you if none has been generated yet.

* setSession(Zend\Session\Container $session) allows you to specify a session object to use
for persisting the CAPTCHA token. getSession () allows you to retrieve the current session object.

All word CAPTCHAs allow you to pass an array of options or Traversable object to the constructor, or, alternately,
pass them to setOptions (). By default, the wordLen, timeout, and sessionClass keys may all be used. Each
concrete implementation may define additional keys or utilize the options in other ways.

Note: Zend\Captcha\AbstractWord is an abstract class and may not be instantiated directly.

391

Zend Framework 2 Documentation, Release 2.3.5

105.2 Zend\Captcha\Dumb

The Zend\Captcha\Dumb adapter is mostly self-descriptive. It provides a random string that must be typed in
reverse to validate. As such, it’s not a good CAPTCHA solution and should only be used for testing. It extends
Zend\Captcha\AbstractWord.

105.3 Zend\Captcha\Figlet

The Zend\Captcha\Figlet adapter utilizes Zend\Texi\Figlet to present a figlet to the user.

Options passed to the constructor will also be passed to the Zend\Texi\Figlet object. See the Zend\Texi\Figlet docu-
mentation for details on what configuration options are available.

105.4 Zend\Captcha\lmage

The Zend\Captcha\Image adapter takes the generated word and renders it as an image, performing various skew-
ing permutations to make it difficult to automatically decipher. It requires the GD extension compiled with TrueType
or Freetype support. Currently, the Zend\Captcha\Image adapter can only generate PNG images.

Zend\Captcha\Image extends Zend\Captcha\AbstractWord, and additionally exposes the following
methods:

* setExpiration ($expiration) and getExpiration () allow you to specify a maximum lifetime the
CAPTCHA image may reside on the filesystem. This is typically a longer than the session lifetime. Garbage
collection is run periodically each time the CAPTCHA object is invoked, deleting all images that have expired.
Expiration values should be specified in seconds.

* setGcFreqg($gcFreq) and getGeFreg () allow you to specify how frequently garbage collection should
run. Garbage collection will run every 1/$gcFreq calls. The default is 100.

* setFont ($font) and getFont () allow you to specify the font you will use. $font should be a fully
qualified path to the font file. This value is required; the CAPTCHA will throw an exception during generation
if the font file has not been specified.

* setFontSize ($fsize) and getFontSize () allow you to specify the font size in pixels for generating
the CAPTCHA. The default is 24px.

* setHeight (Sheight) and getHeight () allow you to specify the height in pixels of the generated
CAPTCHA image. The default is 50px.

* setWidth ($width) and getWidth () allow you to specify the width in pixels of the generated CAPTCHA
image. The default is 200px.

* setImgDir ($imgDir) and getImgDir () allow you to specify the directory for storing CAPTCHA im-
ages. The defaultis “. /images/captcha/”, relative to the bootstrap script.

* setImgUrl ($imgUrl) and get ImgUrl () allow you to specify the relative path to a CAPTCHA image to
use for HTML markup. The default is “/images/captcha/”.

e setSuffix($suffix) and getSuffix () allow you to specify the filename suffix for the CAPTCHA
image. The default is “. png”. Note: changing this value will not change the type of the generated image.

* setDotNoiseLevel ($level) and getDotNoiseLevel (), along with
setLineNoiseLevel ($level) and getLineNoiseLevel (), allow you to control how much
“noise” in the form of random dots and lines the image would contain. Each unit of $1evel produces one

392 Chapter 105. CAPTCHA Adapters

http://php.net/gd

Zend Framework 2 Documentation, Release 2.3.5

random dot or line. The default is 100 dots and 5 lines. The noise is added twice - before and after the image
distortion transformation.

All of the above options may be passed to the constructor by simply removing the ‘set” method prefix and casting the
initial letter to lowercase: “suffix”, “height”, “imgUrl”, etc.

105.5 Zend\Captcha\ReCaptcha

The Zend\Captcha\ReCaptcha adapter uses Zend\Service\ReCaptcha\ReCaptcha to generate and validate
CAPTCHAEs. It exposes the following methods:

* setPrivKey ($key) and getPrivKey () allow you to specify the private key to use for the ReCaptcha
service. This must be specified during construction, although it may be overridden at any point.

* setPubKey ($key) and getPubKey () allow you to specify the public key to use with the ReCaptcha
service. This must be specified during construction, although it may be overridden at any point.

* setService (ZendService\ReCaptcha\ReCaptcha $service) and getService () allow you
to set and get the ReCaptcha service object.

105.5. Zend\Captcha\ReCaptcha 393

Zend Framework 2 Documentation, Release 2.3.5

394 Chapter 105. CAPTCHA Adapters

20

21

22

23

24

25

26

27

28

29

CHAPTER 106

Introduction

Zend\Code\Generator provides facilities to generate arbitrary code using an object-oriented interface, both to
create new code as well as to update existing code. While the current implementation is limited to generating PHP
code, you can easily extend the base class in order to provide code generation for other tasks: JavaScript, configuration
files, apache vhosts, etc.

106.1 Theory of Operation

In the most typical use case, you will simply instantiate a code generator class and either pass it the appropriate
configuration or configure it after instantiation. To generate the code, you will simply echo the object or call its
generate () method.

// Passing configuration to the constructor:
Sfile = new Zend\Code\Generator\FileGenerator (array (
"classes’ => array (
new Zend\Code\Generator\ClassGenerator (
"World’, // name

null, // namespace
null, // flags
null, // extends

array (), // interfaces
array(), // properties

array (
new Zend\Code\Generator\MethodGenerator (
"hello’, // name
array (), // parameters
"public’, // visibility

"echo \’"Hello world!\’;’ // body

)
)) i

// Render the generated file
echo $file->generate();

// or write it to a file:
file_put_contents ('World.php’, $file->generate());

// OR

395

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Zend Framework 2 Documentation, Release 2.3.5

// Configuring after instantiation
Smethod = new Zend\Code\Generator\MethodGenerator () ;
Smethod->setName (' hello’)

->setBody (" echo \’"Hello world!\’;’);

Sclass = new Zend\Code\Generator\ClassGenerator () ;
Sclass—>setName (' World’)
—>addMethodFromGenerator ($Smethod) ;

Sfile = new Zend\Code\Generator\FileGenerator();
Sfile—->setClass (Sclass);

// Render the generated file
echo $file->generate();

// or write it to a file:
file_put_contents ('World.php’, S$file->generate());

Both of the above samples will render the same result:
<?php

class World

{

public function hello()
{

echo 'Hello world!’;

Another common use case is to update existing code — for instance, to add a method to a class. In such a case, you must
first inspect the existing code using reflection, and then add your new method. Zend\Code\Generator makes this
trivially simple, by leveraging ZendCodeReflection.

As an example, let’s say we’ve saved the above to the file Wor1d.php, and have already included it. We could then

do the following:

Sclass = Zend\Code\Generator\ClassGenerator::fromReflection (
new Zend\Code\Reflection\ClassReflection ('World”)
)i

Smethod = new Zend\Code\Generator\MethodGenerator () ;
Smethod->setName (' mrMcFeeley’)

->setBody ('echo \'Hello, Mr. McFeeley!\’;’);
Sclass—->addMethodFromGenerator (Smethod) ;

Sfile = new Zend\Code\Generator\FileGenerator();
Sfile—->setClass ($Sclass);

// Render the generated file
echo $file->generate();

// Or, better yet, write it back to the original file:
file_put_contents ('World.php’, S$file->generate());

The resulting class file will now look like this:

396 Chapter 106. Introduction

Zend Framework 2 Documentation, Release 2.3.5

<?php

class World
{

public function hello()
{

echo 'Hello world!’;

public function mrMcFeeley ()

{

echo "Hellow Mr. McFeeley!’;

106.1. Theory of Operation

397

Zend Framework 2 Documentation, Release 2.3.5

398 Chapter 106. Introduction

SO S

CcHAPTER 107

Zend\Code\Generator Reference

107.1 Abstract Classes and Interfaces

107.1.1 Zend\Code\Generator\Generatorinterface

The base interface from which all CodeGenerator classes implement provides the minimal functionality necessary. It’s
API is as follows:

interface Zend\Code\Generator\GeneratorInterface

{

public function generate();

}

107.1.2 Zend\Code\Generator\AbstractGenerator

Zend\Code\Generator\AbstractGenerator implements Zend\Code\Generator\GeneratorInterface,
and adds some properties for tracking whether content has changed as well as the amount of indentation that should
appear before generated content. Its API is as follows:

abstract class Zend\Code\Generator\AbstractGenerator
implements Zend\Code\Generator\GeneratorInterface

public function __construct (Array|Traversable Soptions = array())
public function setOptions (Array Soptions)

public function setSourceContent ($sourceContent)
)

public

public

public

public

public
}

function
function
function
function
function

getSourceContent (

setSourceDirty (SisSourceDirty = true)
isSourceDirty ()

setIndentation ($indentation)
getIndentation ()

The constructor passes the Soptions parameter to setOptions ().

Like most classes in Zend Framework, setOptions () compares an option key to existing setters in the class, and
passes the value on to that method if found.

setSourceContent () and getSourceContent () are intended to either set the default content for the code
being generated, or to replace said content once all generation tasks are complete.

399

Zend Framework 2 Documentation, Release 2.3.5

107.1.3 Zend\Code\Generator\AbstractMemberGenerator

Zend\Code\Generator\AbstractMemberGenerator is a base class for generating class members — prop-
erties and methods — and provides accessors and mutators for establishing visibility; whether or not the member is
abstract, static, or final; and the name of the member. Its AP/ is as follows:

abstract class Zend\Code\Generator\AbstractMemberGenerator
extends Zend\Code\Generator\AbstractGenerator

public function setAbstract (SisAbstract)
public function isAbstract ()

public function setStatic($isStatic)
public function isStatic ()

public function setVisibility($visibility)
public function getVisibility ()

public function setName (Sname)

public function getName ()

107.2 Concrete CodeGenerator Classes

107.2.1 Zend\Code\Generator\BodyGenerator

Zend\Code\Generator\BodyGenerator is intended for generating arbitrary procedural code to include
within a file. As such, you simply set content for the object, and it will return that content when you invoke
generate ().

The API of the class is as follows:

class Zend\Code\Generator\BodyGenerator extends Zend\Code\Generator\AbstractGenerator
{

public function setContent (Scontent)
public function getContent ()
public function generate ()

107.2.2 Zend\Code\Generator\ClassGenerator

Zend\Code\Generator\ClassGenerator is intended for generating PHP classes. The basic functionality

just generates the PHP class itself, as well as optionally the related PHP DocBlock. Classes may implement or inherit
from other classes, and may be marked as abstract. Utilizing other code generator classes, you can also attach class
constants, properties, and methods.

The API is as follows:

class Zend\Code\Generator\ClassGenerator extends Zend\Code\Generator\AbstractGenerator
{

public static function fromReflection (

Zend\Code\Reflection\ClassReflection SreflectionClass

)

public function addConstants (Array Sproperties)

public function addConstant (Sproperty)

public function getConstants()

public function getConstant (SpropertyName)

public function setDocblock (Zend\Code\Generator\DocBlockGenerator Sdocblock)

400 Chapter 107. Zend\Code\Generator Reference

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

public function getDocblock ()

public function setName (Sname)

public function getName ()

public function setAbstract (SisAbstract)

public function isAbstract ()

public function setExtendedClass ($extendedClass)
public function getExtendedClass ()

public function setImplementedInterfaces (Array SimplementedInterfaces)
public function getImplementedInterfaces()
public function addProperties (Array Sproperties)
public function addProperty (Sproperty)

public function getProperties|()

public function getProperty (SpropertyName)
public function addMethods (Array Smethods)
public function addMethod (Smethod)

public function getMethods ()

public function getMethod (SmethodName)

public function hasMethod (SmethodName)

public function isSourceDirty ()

public function generate ()

The addProperty () method accepts an array of information that may be wused to gener-
ate a Zend\Code\Generator\PropertyGenerator instance — or simply an instance of
Zend\Code\Generator\PropertyGenerator. Likewise, addMethod () accepts either an array of
information for generating a Zend\Code\Generator\MethodGenerator instance or a concrete instance of
that class.

Note that setDocBlock () expects an instance of Zend\Code\Generator\DocBlockGenerator.

107.2.3 Zend\Code\Generator\DocBlockGenerator

Zend\Code\Generator\DocBlockGenerator can be used to generate arbitrary PHP docblocks, including
all the standard docblock features: short and long descriptions and annotation tags.

Annotation tags may be set using the setTag () and setTags () methods; these each take either an array describing
the tag that may be passed to the Zend\Code\Generator\DocBlock\Tag constructor, or an instance of that
class.

The API is as follows:

class Zend\Code\Generator\DocBlockGenerator extends Zend\Code\Generator\AbstractGenerator

{

public static function fromReflection(
Zend\Code\Reflection\DocblockReflection Sreflectionbocblock

)

public function setShortDescription (S

public function getShortDescription ()

public function setLongDescription (S$1

public function getLongDescription ()

public function setTags (Array S$tags)

public function setTag(sStag)

public function getTags ()

public function generate ()

shortDescription)

ongDescription)

107.2. Concrete CodeGenerator Classes 401

Zend Framework 2 Documentation, Release 2.3.5

107.2.4 Zend\Code\Generator\DocBlock\Tag

Zend\Code\Generator\DocBlock\Tag is intended for creating arbitrary annotation tags for inclusion in PHP
docblocks. Tags are expected to contain a name (the portion immediately following the ‘@’ symbol) and a description
(everything following the tag name).

The class API is as follows:

class Zend\Code\Generator\DocBlock\Tag
extends Zend\Code\Generator\AbstractGenerator

public static function fromReflection (
Zend\Code\Reflection\DocBlock\Tag\TagInterface SreflectionTag

)

public function setName ($Sname)

public function getName ()

public function setDescription($Sdescription)

public function getDescription()

public function generate ()

107.2.5 Zend\Code\Generator\DocBlock\Tag\ParamTag

Zend\Code\Generator\DocBlock\Tag\ParamTag is a specialized version of
Zend\Code\Generator\DocBlock\Tag, and represents a method parameter. The tag name is therefor
known (“param”), but due to the format of this annotation tag, additional information is required in order to generate
it: the parameter name and data type it represents.

The class API is as follows:

class Zend\Code\Generator\DocBlock\Tag\ParamTag
extends Zend\Code\Generator\DocBlock\Tag

public static function fromReflection (
Zend\Code\Reflection\DocBlock\Tag\TagInterface SreflectionTagParam

)

public function setDatatype ($Sdatatype)

public function getDatatype ()

public function setParamName ($paramName)

public function getParamName ()

public function generate ()

107.2.6 Zend\Code\Generator\DocBlock\Tag\ReturnTag

Like the param docblock tag variant, Zend\Code\Generator\DocBlock\Tag\ReturnTag is an annotation
tag variant for representing a method return value. In this case, the annotation tag name is known (“return”), but

requires a return type.
The class API is as follows:

class Zend\Code\Generator\DocBlock\Tag\ParamTag
extends Zend\Code\Generator\DocBlock\Tag

public static function fromReflection (
Zend\Code\Reflection\DocBlock\Tag\TagInterface SreflectionTagReturn

402 Chapter 107. Zend\Code\Generator Reference

Zend Framework 2 Documentation, Release 2.3.5

)

public function setDatatype (Sdatatype)
public function getDatatype ()

public function generate ()

107.2.7 Zend\Code\Generator\FileGenerator

Zend\Code\Generator\FileGenerator is used to generate the full contents of a file that will contain PHP
code. The file may contain classes or arbitrary PHP code, as well as a file-level docblock if desired.

When adding classes to the file, you will need to pass either an array of information to pass to the
Zend\Code\Generator\ClassGenerator constructor, or an instance of that class. Similarly, with docblocks,
you will need to pass information for the Zend\Code\Generator\DocBlockGenerator constructor to con-
sume or an instance of the class.

The API of the class is as follows:

class Zend\Code\Generator\FileGenerator extends Zend\Code\Generator\AbstractGenerator
{
public static function fromReflectedFilePath (
SfilePath,
SusePreviousCodeGeneratorIfItExists = true,
SincludeIfNotAlreadyIncluded = true)

public static function fromReflection (Zend\Code\Reflection\FileReflection SreflectionFile)

public function setDocblock (Zend\Code\Generator\DocBlockGenerator Sdocblock)
public function getDocblock ()

public function setRequiredFiles ($requiredFiles)
public function getRequiredFiles ()

public function setClasses (Array Sclasses)
public function getClass ($name = null)

public function setClass(Sclass)

public function setFilename ($filename)

public function getFilename ()

public function getClasses|()

public function setBody ($body)

public function getBody ()

public function isSourceDirty ()

public function generate ()

107.2.8 Zend\Code\Generator\Member\ContainerGenerator

Zend\Code\Generator\Member\ContainerGenerator is used internally by
Zend\Code\Generator\ClassGenerator to keep track of class members — properties and methods
alike. These are indexed by name, using the concrete instances of the members as values.

The API of the class is as follows:

class Zend\Code\Generator\Member\ContainerGenerator extends ArrayObject

{
public function __ construct (Stype = self::TYPE_PROPERTY)

107.2. Concrete CodeGenerator Classes 403

Zend Framework 2 Documentation, Release 2.3.5

107.2.9 Zend\Code\Generator\MethodGenerator

Zend\Code\Generator\MethodGenerator describes a class method, and can generate both the code and
the docblock for the method. The visibility and status as static, abstract, or final may be indicated, per its parent
class, Zend\Code\Generator\AbstractMemberGenerator. Finally, the parameters and return value for
the method may be specified.

Parameters may be set using setParameter () or setParameters (). In each case, a parameter should either
be an array of information to pass to the Zend\Code\Generator\ParameterGenerator constructor or an
instance of that class.

The API of the class is as follows:

class Zend\Code\Generator\MethodGenerator
extends Zend\Code\Generator\AbstractMemberGenerator

public static function fromReflection (
Zend\Code\Reflection\MethodReflection SreflectionMethod

)

public
public
public
public
public
public
public
public
public

function
function
function
function
function
function
function
function
function

setDocblock (Zend\Code\Generator\DocBlockGenerator S$docblock)
getDocblock ()

setFinal ($SisFinal)

setParameters (Array Sparameters)

setParameter (Sparameter)

getParameters ()

setBody ($body)

getBody ()

generate ()

107.2.10 Zend\Code\Generator\ParameterGenerator

Zend\Code\Generator\ParameterGenerator may be used to specify method parameters. Each parameter
may have a position (if unspecified, the order in which they are registered with the method will be used), a default
value, and a data type; a parameter name is required.

The API of the class is as follows:

class Zend\Code\Generator\ParameterGenerator extends Zend\Code\Generator\AbstractGenerator

{

public static function fromReflection (
Zend\Code\Reflection\ParameterReflection SreflectionParameter

)

public
public
public
public
public
public
public
public
public
public
public

function
function
function
function
function
function
function
function
function
function
function

setType (Stype)

getType ()

setName (Sname)

getName ()

setDefaultValue (SdefaultvValue)
getDefaultValue ()
setPosition (Sposition)
getPosition ()
getPassedByReference ()
setPassedByReference (Sp

generate ()

assedByReference)

There are several problems that might occur when trying to set NULL, booleans or arrays as default values. For this
the value holder object Zend\Code\Generator\ParameterDefaultValueGenerator can be used, for

404

Chapter 107. Zend\Code\Generator Reference

Zend Framework 2 Documentation, Release 2.3.5

example:

Sparameter = new Zend\Code\Generator\ParameterGenerator () ;
Sparameter—->setDefaultValue (
new Zend\Code\Generator\ValueGenerator ("null™)
)
Sparameter—->setDefaultValue (
new Zend\Code\Generator\ValueGenerator ("array (' foo’, ’'bar’)")

)i

Internally setDefaultValue () also converts the values which can’t be expressed in PHP into the value holder.

107.2.11 Zend\Code\Generator\PropertyGenerator

Zend\Code\Generator\PropertyGenerator describes a class property, which may be either a constant or a
variable. In each case, the property may have an optional default value associated with it. Additionally, the visibility of
variable properties may be set, per the parent class, Zend\Code\Generator\AbstractMemberGenerator.

The API of the class is as follows:

class Zend\Code\Generator\PropertyGenerator
extends Zend\Code\Generator\AbstractMemberGenerator

public static function fromReflection (
Zend\Code\Reflection\PropertyReflection SreflectionProperty

)

public function setConst ($Sconst)

public function isConst ()

public function setDefaultValue ($defaultValue)

public function getDefaultValue ()

public function generate ()

107.2. Concrete CodeGenerator Classes 405

Zend Framework 2 Documentation, Release 2.3.5

406 Chapter 107. Zend\Code\Generator Reference

CHAPTER 108

Zend\Code\Generator Examples

108.1 Generating PHP classes

The following example generates an empty class with a class-level DocBlock.

use Zend\Code\Generator\ClassGenerator;
use Zend\Code\Generator\DocBlockGenerator;

Sfoo = new ClassGenerator();
Sdocblock = DocBlockGenerator::fromArray (array (

)) i

Sfoo->setName (' Foo’)

"shortDescription’ => ’'Sample generated class’,

"longDescription’ => ’'This is a class generated with Zend\Code\Generator.’,
"tags’ => array (
array (
"name’ => ’'version’,

"description’ => ’S$Rev:$’,
),
array (
"name’ => ’license’,
"description’ => ’'New BSD’,
)I
)I

->setDocblock (Sdocblock) ;

echo $foo->generate();

The above code will result in the following:

J ko

*
*
*

*

*

*

*/

Sample generated class
This is a class generated with Zend\Code\Generator.

@version SRev:S$S
@license New BSD

class Foo

{

407

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

108.1.1 Generating PHP classes with class properties

Building on the previous example, we now add properties to our generated class.

use Zend\Code\Generator\ClassGenerator;
use Zend\Code\Generator\DocBlockGenerator;
use Zend\Code\Generator\PropertyGenerator;

Sfoo = new ClassGenerator();
Sdocblock = DocBlockGenerator::fromArray (array (
"shortDescription’ => ’'Sample generated class’,

"longDescription’ => 'This is a class generated with Zend\Code\Generator.’,
"tags’ => array (
array (
"name’ => ’version’,
"description’ => ’SRev:$’,
) 14
array (
"name’ => ’license’,

"description’ =>
)I
)I
V)i
Sfoo—->setName (' Foo’)
->setDocblock ($Sdocblock)
—->addProperties (array (
array (' _bar’, ’'baz’,
array ('baz’, "bat’,
))
—>addConstants (array (

’New BSD’,

array ('bat’, " foobarbazbat’)

)) i

echo $foo->generate();

The above results in the following class definition:

J ko

* Sample generated class

PropertyGenerator: :FLAG_PROTECTED),
PropertyGenerator: :FLAG_PUBLIC)

* This is a class generated with Zend\Code\Generator.

* @version SRev:$
* @license New BSD

*/
class Foo
{

protected $ _bar = ’'baz’;

public Sbaz = ’'bat’;

const bat = ' foobarbazbat’;

408

Chapter 108. Zend\Code\Generator Examples

20
21

2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48

49

51

52

54

Zend Framework 2 Documentation, Release 2.3.5

108.1.2 Generating PHP classes with class methods

Zend\Code\Generator\ClassGenerator allows you to attach methods with optional content to your classes.
Methods may be attached as either arrays or concrete Zend\Code\Generator\MethodGenerator instances.

use Zend\Code\Generator\ClassGenerator;
use Zend\Code\Generator\DocBlockGenerator;
use Zend\Code\Generator\DocBlock\Tag;

use Zend\Code\Generator\MethodGenerator;
use Zend\Code\Generator\PropertyGenerator;

Sfoo = new ClassGenerator();
Sdocblock = DocBlockGenerator::fromArray (array (
"shortDescription’ => ’'Sample generated class’,

"longDescription’ => 'This is a class generated with Zend\Code\Generator.’,
"tags’ => array (
array (
"name’ => ’'version’,

"description’ => ’S$Rev:$’,
)!
array (
"name’ => ’license’,
"description’ => ’'New BSD’,
)I
)I
1)
Sfoo—->setName (' Foo’)
->setDocblock (Sdocblock)
—>addProperties (array (
array (' _bar’, ’'baz’, PropertyGenerator: :FLAG_PROTECTED),
array ('baz’, "bat’, PropertyGenerator: :FLAG_PUBLIC)
))
—>addConstants (array (
array ('bat’, ' foobarbazbat’, PropertyGenerator::FLAG_CONSTANT)
))
—>addMethods (array (
// Method passed as array
MethodGenerator: :fromArray (array (

"name’ => ’getBar’,

"parameters’ => array(’'bar’),

"body’ => ’Sthis-> bar = $bar;’ . "\n" . ’'return S$Sthis;’,

"docblock’ => DocBlockGenerator::fromArray (array (
"shortDescription’ => ’Set the bar property’,
"longDescription’ => null,
"tags’ => array (

new Tag\ParamTag (array (
"paramName’ => ’bar’,
"datatype’ => ’string’

))

new Tag\ReturnTag (array (
"datatype’ => ’string’,

))

) ’
))
))

// Method passed as concrete instance
new MethodGenerator (

"getBar’,

array (),

108.1. Generating PHP classes 409

55

57

58

60

61

62

63

64

65

66

67

68

69

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Zend Framework 2 Documentation, Release 2.3.5

MethodGenerator: :FLAG_PUBLIC,
"return $this->_bar;’,
DocBlockGenerator::fromArray (array (

"shortDescription’ => ’'Retrieve the bar property’,

"longDescription’ => null,
"tags’ => array (
new Tag\ReturnTag (array (
"datatype’ => ’string|null’,

echo $foo->generate();

The above generates the following output:

J ok *
* Sample generated class
*
This 1is a class generated with Zend\Code\Generator.
*
* @version SRev:$S
* @license New BSD
*/
class Foo
{

protected $_bar = 'baz’;
public $baz = ’'bat’;
const bat = ' foobarbazbat’;

J %k
* Set the bar property
*
* @param string bar
* @return string
*/
public function setBar (Sbar)
{
Sthis—->_bar = S$bar;
return Sthis;

J %k
* Retrieve the bar property
*
* @return string/null
*/
public function getBar ()
{

return Sthis->_bar;

410 Chapter 108. Zend\Code\Generator Examples

Zend Framework 2 Documentation, Release 2.3.5

108.2 Generating PHP files

Zend\Code\Generator\FileGenerator can be used to generate the contents of a PHP file. You can
include classes as well as arbitrary content body. When attaching classes, you should attach either concrete
Zend\Code\Generator\ClassGenerator instances or an array defining the class.

In the example below, we will assume you’ve defined $ foo per one of the class definitions in a previous example.

use Zend\Code\Generator\DocBlockGenerator;
use Zend\Code\Generator\FileGenerator;

Sfile = FileGenerator::fromArray (array (

)) i

"classes’ => array ($foo),

"docblock’” => DocBlockGenerator::fromArray (array (
"shortDescription’ => ’'Foo class file’,
"longDescription’ => null,

"tags’ => array (
array (
"name’ => ’license’,

"description’” => ’'New BSD’,
)I
)I
))

"body’ => 'define (\'APPLICATION_ENV\’, \’testing\’);’,

Calling generate () will generate the code — but not write it to a file. You will need to capture the contents and
write them to a file yourself. As an example:

Scode = S$file->generate();
file_put_contents (' Foo.php’, S$code);

The above will generate the following file:

<?php
J ok k
* Foo class file
*
* @license New BSD
*/

J ok k

20

21

22

23

24

25

*/

Sample generated class

This is a class generated with Zend\Code\Generator.

@version SRev:S$S
@license New BSD

class Foo

{

protected S _bar = 'baz’;
public Sbaz = ’'bat’;
const = ' foobarbazbat’;

J %k

108.2. Generating PHP files

411

26

27

28

29

40

41

42

43

44

45

46

47

48

49

Zend Framework 2 Documentation, Release 2.3.5

* Set the bar property
*
* @param string bar
* @return string
*/
public function setBar (Sbar)

{
Sthis->_bar = S$bar;
return Sthis;

J ok k
* Retrieve the bar property
*
* @return string/null
*/
public function getBar()
{

return Sthis—->_bar;

define (" APPLICATION_ENV’, ’testing’);

108.3 Add code to existing PHP files and classes

108.3.1 Seeding PHP file code generation via reflection

You can add PHP code to an existing PHP file using the code generator. To do so, you need to first do reflection on it.
The static method fromReflectedFileName () allows you to do this.

Sgenerator = Zend\Code\Generator\FileGenerator::fromReflectedFileName (Spath);
$generator->setBody ("\$foo->bar ();");
file_put_contents ($Spath, S$generator->generate());

108.3.2 Seeding PHP class generation via reflection

You may add code to an existing class. To do so, first use the static fromReflection () method to map the class
into a generator object. From there, you may add additional properties or methods, and then regenerate the class.

use Zend\Code\Generator\ClassGenerator;
use Zend\Code\Generator\DocBlockGenerator;
use Zend\Code\Generator\DocBlock\Tag;

use Zend\Code\Generator\MethodGenerator;
use Zend\Code\Reflection\ClassReflection;

Sgenerator = ClassGenerator::fromReflection (
new ClassReflection(Sclass)
)i
Sgenerator—->addMethod (
"setBaz’,
array ('baz’),
MethodGenerator: :FLAG_PUBLIC,

412 Chapter 108. Zend\Code\Generator Examples

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

"$this->_baz = Sbaz;’ . "\n" . ’'return $this;’,
DocBlockGenerator: :fromArray (array (
"shortDescription’” => ’Set the baz property’,
"longDescription’ => null,
"tags’ => array (
new Tag\ParamTag (array (
"paramName’ => ’"baz’,
"datatype’ => ’string’
))
new Tag\ReturnTag (array (
"datatype’ => ’string’,
))
)I
))

Scode = Sgenerator->generate();

108.3. Add code to existing PHP files and classes

413

Zend Framework 2 Documentation, Release 2.3.5

414 Chapter 108. Zend\Code\Generator Examples

1

CHAPTER 109

Introduction to Zend\Config

Zend\Config is designed to simplify access to configuration data within applications. It provides a nested object
property-based user interface for accessing this configuration data within application code. The configuration data
may come from a variety of media supporting hierarchical data storage. Currently, Zend\Config provides adapters
that read and write configuration data stored in .ini, JSON, YAML and XML files.

109.1 Using Zend\Config\Config with a Reader Class

Normally, it is expected that users would use one of the reader classes to read a configuration file, but if configuration
data are available in a PHP array, one may simply pass the data to Zend\Config\Config‘s constructor in order
to utilize a simple object-oriented interface:

// An array of configuration data is given

SconfigArray = array (
"webhost’ => 'www.example.com’,
"database’ => array (
"adapter’ => ’'pdo_mysql’,
"params’ => array (
"host’ => "db.example.com’,
"username’ => ’dbuser’,
'password’ => ’"secret’,
" dbname’ => 'mydatabase’

)i

// Create the object-oriented wrapper using the configuration data
Sconfig = new Zend\Config\Config(SconfigArray);

// Print a configuration datum (results in ’www.example.com’)
echo $config->webhost;

As illustrated in the example above, Zend\Config\Config provides nested object property syntax to access con-
figuration data passed to its constructor.

Along with the object-oriented access to the data values, Zend\Config\Config also has get () method that
returns the supplied value if the data element doesn’t exist in the configuration array. For example:

Shost = S$config->database->get ("host’, ’localhost’);

415

Zend Framework 2 Documentation, Release 2.3.5

109.2 Using Zend\Config\Config with a PHP Configuration File

It is often desirable to use a purely PHP-based configuration file. The following code illustrates how easily this can be

accomplished:

// config.php
return array (
"webhost’ => "www.example.com’,
"database’ => array (
"adapter’ => ’'pdo_mysqgl’,
"params’ => array (
"host’ => "db.example.com’,
"username’ => ’dbuser’,
"password’ => ’secret’,
" dbname’ => 'mydatabase’

)i

// Consumes the configuration array
Sconfig = new Zend\Config\Config(include ’'config.php’);

// Print a configuration datum (results in ’'www.example.com’)
echo Sconfig->webhost;

416 Chapter 109. Introduction to Zend\Config

cHAPTER 110

Theory of Operation

Configuration data are made accessible to Zend\Config\Config"s constructor with an associative array, which
may be multi-dimensional, so data can be organized from general to specific. Concrete adapter classes adapt configu-
ration data from storage to produce the associative array for Zend\Config\Config‘s constructor. If needed, user
scripts may provide such arrays directly to Zend\Config\Config‘s constructor, without using a reader class.

Each value in the configuration data array becomes a property of the Zend\Config\Config object. The key
is used as the property name. If a value is itself an array, then the resulting object property is created as a new
Zend\Config\Config object, loaded with the array data. This occurs recursively, such that a hierarchy of config-
uration data may be created with any number of levels.

Zend\Config\Config implements the Countable and Iterator interfaces in order to facilitate simple access to
configuration data. Thus, Zend\Config\Config objects support the count() function and PHP constructs such as
foreach.

By default, configuration data made available through Zend\Config\Config are read-only, and an assignment
(e.g. Sconfig->database->host = ’example.com’ ;) results in a thrown exception. This default behav-
ior may be overridden through the constructor, allowing modification of data values. Also, when modifications are
allowed, Zend\Config\Config supports unsetting of values (i.e. unset ($config->database->host)).
The isReadOnly () method can be used to determine if modifications to a given Zend\Config\Config
object are allowed and the setReadOnly () method can be used to stop any further modifications to a
Zend\Config\Config object that was created allowing modifications.

Note: Modifying Config does not save changes

It is important not to confuse such in-memory modifications with saving configuration data out to specific storage
media. Tools for creating and modifying configuration data for various storage media are out of scope with respect
to Zend\Config\Config. Third-party open source solutions are readily available for the purpose of creating and
modifying configuration data for various storage media.

If you have two Zend\Config\Config objects, you can merge them into a single object using the merge () func-
tion. For example, given Sconfigand $1localConfig, you can merge data from $localConfigto $config
using $config->merge ($localConfig) ;. The items in $localConfig will override any items with the
same name in $config.

Note: The Zend\Config\Config object that is performing the merge must have been constructed to allow
modifications, by passing TRUE as the second parameter of the constructor. The setReadOnly () method can then

be used to prevent any further modifications after the merge is complete.

417

http://php.net/manual/en/class.countable.php
http://php.net/manual/en/class.iterator.php
http://php.net/count
http://php.net/foreach

Zend Framework 2 Documentation, Release 2.3.5

418 Chapter 110. Theory of Operation

CHAPTER 111

Zend\Config\Reader

Zend\Config\Reader gives you the ability to read a config file. It works with concrete implementations for
different file format. The Zend\Config\Reader is only an interface, that define the two methods fromFile ()
and fromString (). The concrete implementations of this interface are:

e Zend\Config\Reader\Ini

¢ Zend\Config\Reader\Xml

e Zend\Config\Reader\Json

e Zend\Config\Reader\Yaml

* Zend\Config\Reader\JavaProperties

The fromFile () and fromString () return a PHP array contains the data of the configuration file.

Note: Differences from ZF1

The Zend\Config\Reader component no longer supports the following features:
* Inheritance of sections.

» Reading of specific sections.

111.1 Zend\Config\Reader\Ini

Zend\Config\Reader\Ini enables developers to store configuration data in a familiar /NI format and read them
in the application by using an array syntax.

Zend\Config\Reader\Ini utilizes the parse_ini_file() PHP function. Please review this documentation to be
aware of its specific behaviors, which propagate to Zend\Config\Reader\Ini, such as how the special values
of “TRUE”, “FALSE”, “yes”, “no”, and “NULL” are handled.

Note: Key Separator

By default, the key separator character is the period character (“.”). This can be changed, however, using the
setNestSeparator () method. For example:

ader = new Zend\Config\Reader\Ini ();
sreader—->setNestSeparator (' -");

419

http://php.net/parse_ini_file

Zend Framework 2 Documentation, Release 2.3.5

The following example illustrates a basic use of Zend\Config\Reader\Ini for loading configuration data from
an INI file. In this example there are configuration data for both a production system and for a staging system. Suppose
we have the following INI configuration file:

webhost = '"www.example.com’
database.adapter = 'pdo_mysqgl’
database.params.host = "db.example.com’
database.params.username = ’dbuser’
database.params.password = ’secret’
database.params.dbname = ’"dbproduction’

We can use the Zend\Config\Reader\Ini to read this INI file:

~r = new Zend\Config\Reader\Ini ();
= Sreader—->fromFile ('’ /path/to/config.ini’);

echo $data[’webhost’]; // prints "www.example.com"
echo Sdata[’database’] ['params’] [’ dbname’]; // prints "dbproduction"

The Zend\Config\Reader\Ini supports a feature to include the content of a INI file in a specific section of
another INI file. For instance, suppose we have an INI file with the database configuration:

database.adapter = "pdo_mysqgl’
database.params.host = "db.example.com’
database.params.username = ’'dbuser’
database.params.password = ’secret’
database.params.dbname = ’dbproduction’

We can include this configuration in another INI file, for instance:

webhost = ’'www.example.com’
@include = ’"database.ini’

If we read this file using the component Zend\Config\Reader\Ini we will obtain the same configuration data
structure of the previous example.

The @include = ’file-to-include.ini’ can be used also in a subelement of a value. For instance we can
have an INI file like that:

adapter = "pdo_mysqgl’

params.host = "db.example.com’

params.username = ’dbuser’

params.password = ’secret’

params.dbname = ’"dbproduction’

And assign the @include as subelement of the database value:

webhost = 'www.example.com’
database.@include = ’'database.ini’

111.2 Zend\Config\Reader\Xml

Zend\Config\Reader\Xml enables developers to read configuration data in a familiar XML format and read
them in the application by using an array syntax. The root element of the XML file or string is irrelevant and may be
named arbitrarily.

The following example illustrates a basic use of Zend\Config\Reader\Xml for loading configuration data from
an XML file. Suppose we have the following XML configuration file:

420 Chapter 111. Zend\Config\Reader

Zend Framework 2 Documentation, Release 2.3.5

<?xml version="1.0" encoding="utf-8"?>

<config>
<webhost>www.example.com</webhost>
<database>
<adapter value="pdo_mysgl"/>
<params>
<host value="db.example.com"/>
<username value="dbuser"/>
<password value="secret"/>
<dbname value="dbproduction"/>
</params>
</database>
</config>

We can use the Zend\Config\Reader\Xml to read this XML file:

Sreader = new Zend\Config\Reader\Xml () ;
Sdata = Sreader->fromFile (' /path/to/config.xml’);

echo $data[’webhost’]; // prints "www.example.com"
echo $data[’database’][’'params’] [’dbname’] [’'value’]; // prints "dbproduction"

Zend\Config\Reader\Xml utilizes the XMLReader PHP class. Please review this documentation to be aware
of its specific behaviors, which propagate to Zend\Config\Reader\Xml.

Using Zend\Config\Reader\Xml we can include the content of XML files in a specific XML element. This
is provided using the standard function XInclude of XML. To use this function you have to add the namespace
xmlns:xi="http://www.w3.0rg/2001/XInclude" to the XML file. Suppose we have an XML files that
contains only the database configuration:

<?xml version="1.0" encoding="utf-8"?>
<config>
<database>
<adapter>pdo_mysqgl</adapter>
<params>
<host>db.example.com</host>
<username>dbuser</username>
<password>secret</password>
<dbname>dbproduct ion</dbname>
</params>
</database>
</config>

We can include this configuration in another XML file, for instance:

<?xml version="1.0" encoding="utf-8"?>

<config xmlns:xi="http://www.w3.0rg/2001/XInclude">
<webhost>www.example.com</webhost>
<xi:include href="database.xml"/>

</config>

The syntax to include an XML file in a specific element is <xi:include href="file-to-include.xml"/>

111.3 Zend\Config\Reader\Json

Zend\Config\Reader\Json enables developers to read configuration data in a JSON format and read them in
the application by using an array syntax.

111.3. Zend\Config\Reader\Json 421

http://php.net/xmlreader
http://www.w3.org/TR/xinclude/

Zend Framework 2 Documentation, Release 2.3.5

The following example illustrates a basic use of Zend\Config\Reader\Json for loading configuration data from
a JSON file. Suppose we have the following JSON configuration file:

{

"webhost" : "www.example.com",
"database" : {
"adapter" : "pdo_mysqgl",
"params" IRt
"host" : "db.example.com",
"username" : "dbuser",
"password" : "secret",
"dbname" : "dbproduction"

}

We can use the Zend\Config\Reader\Json to read this JSON file:

Sreader = new Zend\Config\Reader\Json();
Sdata = Sreader->fromFile(’ /path/to/config. json’);

echo $data[’webhost’]; // prints "www.example.com"
echo $data[’database’] [’'params’] [’dbname’]; // prints "dbproduction"
Zend\Config\Reader\Json utilizes the Zend\Json\Json class.

Using Zend\Config\Reader\Json we can include the content of a JSON file in a specific JSON section or
element. This is provided using the special syntax @include. Suppose we have a JSON file that contains only the
database configuration:

{

"database" : {
"adapter" : "pdo_mysqgl",
"params" : |
"host" : "db.example.conm",
"username" : "dbuser",
"password" : "secret",
"dbname" : "dbproduction"

}

We can include this configuration in another JSON file, for instance:

{
"webhost" : "www.example.com",
"@include" : "database.json"

111.4 Zend\Config\Reader\Yaml

Zend\Config\Reader\Yaml enables developers to read configuration data in a YAML format and read them in
the application by using an array syntax. In order to use the YAML reader we need to pass a callback to an external
PHP library or use the Yaml PECL extension.

The following example illustrates a basic use of Zend\Config\Reader\Yaml that use the Yaml PECL extension.
Suppose we have the following YAML configuration file:

422 Chapter 111. Zend\Config\Reader

http://www.php.net/manual/en/book.yaml.php

Zend Framework 2 Documentation, Release 2.3.5

webhost: www.example.com

database:
adapter: pdo_mysqgl
params:
host: db.example.com

username: dbuser
password: secret
dbname: dbproduction

We can use the Zend\Config\Reader\Yaml to read this YAML file:

- = new Zend\Config\Reader\Yaml () ;
= S$reader->fromFile (’ /path/to/config.yaml’);

echo $data[’webhost’]; // prints "www.example.com"
echo $data[’database’] [’'params’] [’dbname’]; // prints "dbproduction"

If you want to use an external YAML reader you have to pass the callback function in the constructor of the class. For
instance, if you want to use the Spyc library:

// include the Spyc library
require_once (’'path/to/spyc.php’);

Sreader = new Zend\Config\Reader\Yaml (array (' Spyc’,’ YAMLLoadString’));
Sdata = Sreader->fromFile ('’ /path/to/config.yaml’);

echo $data[’webhost’]; // prints "www.example.com"
echo Sdata[’database’] [’params’] [’ dbname’]; // prints "dbproduction"

You can also instantiate the Zend\Config\Reader\Yaml without any parameter and specify the YAML reader
in a second moment using the set YamlDecoder () method.

Using Zend\Config\ReaderYaml we can include the content of a YAML file in a specific YAML section or
element. This is provided using the special syntax @include. Suppose we have a YAML file that contains only the
database configuration:

database:
adapter: pdo_mysqgl
params:
host: db.example.com

username: dbuser
password: secret
dbname: dbproduction

We can include this configuration in another YAML file, for instance:

webhost: www.example.com
@include: database.yaml

111.5 Zend\Config\Reader\JavaProperties

Zend\Config\Reader\JavaProperties enables developers to read configuration data in a familiar
JavaProperties format and read them in the application by using an array syntax.

The following example illustrates a basic use of Zend\Config\Reader\JavaProperties for loading config-
uration data from an JavaProperties file. Suppose we have the following JavaProperties configuration file:

111.5. Zend\Config\Reader\JavaProperties 423

http://code.google.com/p/spyc/

2

4

Zend Framework 2 Documentation, Release 2.3.5

#comment

! comment

webhost :www.example.com
database.adapter:pdo_mysgl
database.params.host:db.example.com
database.params.username:dbuser
database.params.password:secret
database.params.dbname:dbproduction

We can use the Zend\Config\Reader\JavaProperties to read this JavaProperties file:

Sreader = new Zend\Config\Reader\JavaProperties();
Sdata = Sreader—->fromFile (’ /path/to/config.properties’);

echo $data[’webhost’]; // prints "www.example.com"
echo $data[’database.params.dbname’]; // prints "dbproduction”

424 Chapter 111. Zend\Config\Reader

CHAPTER 112

Zend\Config\Writer

Zend\Config\Writer gives you the ability to write config files out of array, Zend\Config\Config and
any Traversable object. The Zend\Config\Writer is an interface that defines two methods: toFile () and
toString (). We have five specific writers that implement this interface:

* Zend\Config\Writer\Ini

e Zend\Config\Writer\Xml

e Zend\Config\Writer\PhpArray
e Zend\Config\Writer\Json

e Zend\Config\Writer\Yaml

112.1 Zend\Config\Writer\Ini

The INI writer has two modes for rendering with regard to sections. By default the top-level configuration is always
written into section names. By calling $writer->setRenderWithoutSectionsFlags (true) ; all options
are written into the global namespace of the INI file and no sections are applied.

As an addition Zend\Config\Writer\Ini has an additional option parameter nestSeparator, which de-
fines with which character the single nodes are separated. The default is a single dot, like it is accepted by
Zend\Config\Reader\Ini by default.

When modifying or creating a Zend\Config\Config object, there are some things to know. To create or modify
a value, you simply say set the parameter of the Config object via the parameter accessor (->). To create a section in
the root or to create a branch, you just create a new array (“Sconfig->branch = array();”

Using Zend\Config\Writer\Ini

This example illustrates the basic use of Zend\Config\Writer\Ini to create a new config file:

// Create the config object
sconfig = new Zend\Config\Config(array (), true);
Sconfig->production = array();

&

sconfig->production->webhost = ’'www.example.com’;

onfig->production->database = array();
onfig->production->database->params = array () ;

nfig->production->database->params->host = ’localhost’;
Sconfig->production->database->params—->username = ’production’;

425

Zend Framework 2 Documentation, Release 2.3.5

Sconfig->production->database->params->password = ’secret’;

Sconfig->production->database->params->dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\Ini();
echo Swriter—->toString(Sconfig);

The result of this code is an INI string contains the following values:

[production]

webhost = "www.example.com"
database.params.host = "localhost"
database.params.username = "production"
database.params.password = "secret"
database.params.dbname = "dbproduction"

You can use the method toFile () to store the INI data in a file.

112.2 Zend\Config\Writer\Xml

The Zend\Config\Writer\Xml can be used to generate an XML string
Zend\Config\Config object.

Using Zend\Config\Writer\Xml

or file starting from a

This example illustrates the basic use of Zend\Config\Writer\Xml to create a new config file:

// Create the config object

Sconfig = new Zend\Config\Config(array (), true);
Sconfig->production = array();
Sconfig->production->webhost = 'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();
Sconfig->production->database->params->host = ’localhost’;
Sconfig->production->database->params—->username = ’production’;
Sconfig->production->database->params->password = ’secret’;
Sconfig->production->database->params->dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\Xml ();
echo Swriter—->toString(Sconfiqg);

The result of this code is an XML string contains the following data:

<?xml version="1.0" encoding="UTF-8"?>
<zend-config>
<production>
<webhost>www.example.com</webhost>
<database>
<params>
<host>localhost</host>
<username>production</username>
<password>secret</password>
<dbname>dbproduct ion</dbname>
</params>
</database>

426 Chapter 112.

Zend\Config\Writer

Zend Framework 2 Documentation, Release 2.3.5

</production>
</zend-config>

You can use the method toFile () to store the XML data in a file.

112.3 Zend\Config\Writer\PhpArray

The Zend\Config\Writer\PhpArray can be used to generate a PHP code that returns an array representation
of an Zend\Config\Config object.

Using Zend\Config\Writer\PhpArray

This example illustrates the basic use of Zend\Config\Writer\PhpArray to create a new config file:

// Create the config object
Sconfig = new Zend\Config\Config(array (), true);

Sconfig->production = array/();

Sconfig->production->webhost = 'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();
Sconfig->production->database->params—->host = ’localhost’;
Sconfig->production->database->params->username = 'production’;
Sconfig->production->database->params->password = ’secret’;
Sconfig->production->database->params—>dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\PhpArray();
echo Swriter—->toString(S$confiqg);

The result of this code is a PHP script that returns an array as follow:

<?php
return array (
"production’ =>
array (
"webhost’ => ’'www.example.com’,
"database’ =>
array (
"params’ =>
array (
"host’ => ’localhost’,
"username’ => ’production’,
"password’ => ’secret’,
"dbname’ => ’dbproduction’,
)I
)I
)I
)i

You can use the method toFile () to store the PHP script in a file.

112.3. Zend\Config\Writer\PhpArray 427

Zend Framework 2 Documentation, Release 2.3.5

112.4 Zend\Config\Writer\dson

The Zend\Config\Writer\Json can be used to generate a PHP code that returns the JSON representation of a
zend\Config\Config object.

Using Zend\Config\Writer\dson

This example illustrates the basic use of Zend\Config\Writer\Json to create a new config file:

// Create the config object
Sconfig = new Zend\Config\Config(array (), true);
Sconfig->production = array/();

Sconfig->production->webhost = ’'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();
Sconfig->production->database->params—->host = ’localhost’;
Sconfig->production->database->params->username = ’production’;
Sconfig->production->database->params->password = ’secret’;
Sconfig->production->database->params—>dbname = ’dbproduction’;
Swriter = new Zend\Config\Writer\Json();

echo Swriter—->toString($confiqg);

The result of this code is a JSON string contains the following values:

{ "webhost" : "www.example.com",
"database" : {
"params" : {
"host" : "localhost",
"username" : "production",
"password" : "secret",
"dbname" : "dbproduction"

}

You can use the method toFile () to store the JSON data in a file.

The Zend\Config\Writer\Json class uses the Zend\Json\Json component to convert the data in a JSON
format.

112.5 Zend\Config\Writer\Yaml

The Zend\Config\Writer\Yaml can be used to generate a PHP code that returns the YAML representation of
a Zend\Config\Config object. In order to use the YAML writer we need to pass a callback to an external PHP
library or use the Yaml PECL extension.

Using Zend\Config\Writer\Yaml

This example illustrates the basic use of Zend\Config\Writer\Yaml to create a new config file using the Yaml
PECL extension:

428 Chapter 112. Zend\Config\Writer

http://www.php.net/manual/en/book.yaml.php

Zend Framework 2 Documentation, Release 2.3.5

// Create the config object
Sconfig = new Zend\Config\Config(array (), true);

Sconfig->production = array/();

Sconfig->production->webhost = ’'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();
$config->production->database->params->host = ’localhost’;
Sconfig->production->database->params->username = 'production’;
Sconfig->production->database->params->password = ’secret’;
Sconfig->production->database->params->dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\Yaml ();
echo Swriter->toString(Sconfig);

The result of this code is a YAML string contains the following values:

webhost: www.example.com
database:
params:
host: localhost
username: production
password: secret
dbname: dbproduction

You can use the method toFile () to store the YAML data in a file.

If you want to use an external YAML writer library you have to pass the callback function in the constructor of the

class. For instance, if you want to use the Spyc library:

// include the Spyc library
require_once (’'path/to/spyc.php’);

Swriter = new Zend\Config\Writer\Yaml (array ('’ Spyc’,’ YAMLDump’));
echo Swriter—->toString(Sconfig);

112.5. Zend\Config\Writer\Yaml|

429

http://code.google.com/p/spyc/

Zend Framework 2 Documentation, Release 2.3.5

430 Chapter 112. Zend\Config\Writer

[R Y B SV R C R

CHAPTER 113

Zend\Config\Processor

Zend\Config\Processor gives you the ability to perform some operations on a Zend\Config\Config
object. The Zend\Config\Processor is an interface that defines two methods: process () and
processValue (). These operations are provided by the following concrete implementations:

* Zend\Config\Processor\Constant: manage PHP constant values;

* Zend\Config\Processor\Filter: filter the configuration data using Zend\Filter;

* Zend\Config\Processor\Queue: manage a queue of operations to apply to configuration data;
e Zend\Config\Processor\Token: find and replace specific tokens;

* Zend\Config\Processor\Translator: translate configuration values in other languages using
Zzend\Il8n\Translator;

Below we reported some examples for each type of processor.

113.1 Zend\Config\Processor\Constant

Using Zend\Config\Processor\Constant

This example illustrates the basic use of Zend\Config\Processor\Constant:

define (/TEST_CONST’, ’'bar’);
// set true to Zend\Config\Config to allow modifications
Sconfig = new Zend\Config\Config(array ('’ foo’ => 'TEST_CONST’), true);

Sprocessor = new Zend\Config\Processor\Constant () ;
echo $config->foo . 7,’;
Sprocessor->process ($config);

echo Sconfig->foo;

This example returns the output: TEST_CONST, bar..

113.2 Zend\Config\Processor\Filter

Using Zend\Config\Processor\Filter

This example illustrates the basic use of Zend\Config\Processor\Filter:

431

Zend Framework 2 Documentation, Release 2.3.5

use Zend\Filter\StringToUpper;
use Zend\Config\Processor\Filter as FilterProcessor;
use Zend\Config\Config;

Sconfig = new Config(array (’foo’ => ’'bar’), true);
Supper = new StringToUpper();

SupperProcessor = new FilterProcessor (Supper);

echo Sconfig->foo . ’,’;
SupperProcessor->process (Sconfiqg);
echo Sconfig->foo;

This example returns the output: bar, BAR.

113.3 Zend\Config\Processor\Queue

Using Zend\Config\Processor\Queue

This example illustrates the basic use of Zend\Config\Processor\Queue:

use Zend\Filter\StringToLower;

use Zend\Filter\StringToUpper;

use Zend\Config\Processor\Filter as FilterProcessor;
use Zend\Config\Processor\Queue;

use Zend\Config\Config;

Sconfig = new Config(array (’foo’ => ’'bar’), true);
Supper = new StringToUpper () ;
Slower = new StringToLower () ;

$lowerProcessor
SupperProcessor

new F
new F

ilterProcessor (Slower);
ilterProcessor (Supper);

Squeue = new Queue () ;
Squeue->insert (SupperProcessor) ;
Squeue->insert (SlowerProcessor) ;
Squeue->process ($confiqg);

echo Sconfig->foo;

This example returns the output: bar. The filters in the queue are applied with a FIFO logic (First In, First Out).

113.4 Zend\Config\Processor\Token

Using Zend\Config\Processor\Token

This example illustrates the basic use of Zend\Config\Processor\Token:

// set the Config to true to allow modifications
Sconfig = new Config(array(’ foo’ => ’'Value is TOKEN’), true);
Sprocessor = new TokenProcessor();

432 Chapter 113. Zend\Config\Processor

Zend Framework 2 Documentation, Release 2.3.5

Sprocessor—->addToken (' TOKEN’, ’'bar’);

echo $Sconfig->foo . ’,’;

Sprocessor->process ($config);
echo Sconfig->foo;

This example returns the output: Value is TOKEN,Value is bar.

113.5 Zend\Config\Processor\Translator

Using Zend\Config\Processor\Translator

This example illustrates the basic use of Zend\Config\Processor\Translator:

use Zend\Config\Config;
use Zend\Config\Processor\Translator as TranslatorProcessor;
use Zend\Il8n\Translator\Translator;

Sconfig = new Config(array(’animal’ => ’"dog’), true);

* The following mapping would exist for the translation
* loader you provide to the translator instance

* Sitalian = array/(

* ’dog’ => ’cane’

*)7

*/
Stranslator = new Translator();
// ... configure the translator
Sprocessor = new TranslatorProcessor (Stranslator);
echo "English: {$config->animal}, ";
Sprocessor->process ($confiqg);
echo "Italian: {$config->animal}";

This example returns the output: English: dog, Italian: cane.

113.5. Zend\Config\Processor\Translator

433

Zend Framework 2 Documentation, Release 2.3.5

434 Chapter 113. Zend\Config\Processor

L S

CHAPTER 114

The Factory

The factory gives you the ability to load a configuration file to an array or to Zend\Config\Config object. The
factory has two purposes

* Loading configuration file(s)

* Storing a configuration file

Note: Storing the configuration will be done to one file. The factory is not aware of merging two or more configu-
rations and will not store it into multiple files. If you want to store particular configuration sections to a different file

you should separate it manually.

114.1 Loading configuration file

The next example illustrates how to load a single configuration file

//Load a php file as array
sconfig = Zend\Config\Factory::fromFile(__ DIR__ .’ /config/my.config.php’);

//Load a xml file as Config object
Sconfig = Zend\Config\Factory::fromFile(_ DIR_ .’ /config/my.config.xml’, true);

For merging multiple configuration files

114.2 Storing configuration file

Sometimes you want to store the configuration to a file. Also this is really easy to do

435

Zend Framework 2 Documentation, Release 2.3.5

436 Chapter 114. The Factory

CHAPTER 115

Introduction to Zend\Console

Zend Framework 2 features built-in console support.

When a Zend\Application is run from a console window (a shell window or Windows command prompt), it will
recognize this fact and prepare Zend\Mvc components to handle the request. Console support is enabled by default,
but to function properly it requires at least one console route and one action controller to handle the request.

e Console routing allows you to invoke controllers and action depending on command line parameters provided
by the user.

* Module Manager integration allows ZF2 applications and modules to display help and usage information, in
case the command line has not been understood (no route matched).

» Console-aware action controllers will receive a console request containing all named parameters and flags. They
are able to send output back to the console window.

» Console adapters provide a level of abstraction for interacting with console on different operating systems.

» Console prompts can be used to interact with the user by asking him questions and retrieving input.

115.1 Writing console routes

A console route defines required and optional command line parameters. When a route matches, it behaves analogical
to a standard, http route and can point to a MVC controller and an action.

Let’s assume that we’d like our application to handle the following command line:

> zf user resetpassword user@mail.com

When a user runs our application (zf) with these parameters, we’d like to call action resetpassword of
Application\Controller\IndexController.

Note: We will use z £ to depict the entry point for your application, it can be shell script in application bin folder or
simply an alias for php public/index.php

First we need to create a route definition:
user resetpassword <userEmail>
This simple route definition expects exactly 3 arguments: a literal “user”, literal “resetpassword” followed by a pa-

rameter we're calling “userEmail”. Let’s assume we also accept one optional parameter, that will turn on verbose
operation:

437

Zend Framework 2 Documentation, Release 2.3.5

user resetpassword [--verbosel|-v] <userEmail>

Now our console route expects the same 3 parameters but will also recognise an optional ——verbose flag, or its
shorthand version: —v.

Note: The order of flags is ignored by Zend\Console. Flags can appear before positional parameters, after them
or anywhere in between. The order of multiple flags is also irrelevant. This applies both to route definitions and the

order that flags are used on the command line.

Let’s use the definition above and configure our console route. Console routes are automatically loaded from the
following location inside config file:

array (
"router’ => array (
"routes’ => array (
// HTTP routes are defined here

)y

"console’ => array(
"router’ => array (
"routes’ => array (
// Console routes go here

)y

Let’s create our console route and pointitto Application\Controller\IndexController: :resetpasswordAction ()

// we could define routes for Application\Controller\IndexController in Application module config fi.

// which is usually located at modules/application/config/module.config.php
array (
"console’ => array (
"router’ => array (
"routes’ => array (
"user-reset-password’ => array (
"options’ => array(

"route’ => ’'user resetpassword [--verbose|-v] <userEmail>’,
"defaults’ => array (

"controller’ => ’'Application\Controller\Index’,

"action’ => ’resetpassword’

See also:

To learn more about console routes and how to use them, please read this chapter: Console routes and routing

438 Chapter 115. Introduction to Zend\Console

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Zend Framework 2 Documentation, Release 2.3.5

115.2 Handling console requests

When a user runs our application from command line and arguments match our console route, a controller class
will be instantiated and an act ion method will be called, just like it is with http requests.

We will now add resetpassword action to Application\Controller\IndexController:

<?php
namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

use Zend\Console\Request as ConsoleRequest;

use Zend\Math\Rand;

class IndexController extends AbstractActionController
{
public function indexAction()

{

return new ViewModel(); // display standard index page

public function resetpasswordAction ()

{

Srequest = S$this->getRequest () ;

// Make sure that we are running in a console and the user has not tricked our
// application into running this action from a public web server.
if (!Sreguest instanceof ConsoleRequest) {

throw new \RuntimeException(’You can only use this action from a console!’);

// Get user email from console and check if the user used —--verbose or -v flag
SuserEmail = Srequest->getParam(’userEmail’);
Sverbose = S$request->getParam(’verbose’) || Srequest->getParam(’'v’);

// reset new password
SnewPassword = Rand::getString(16);

// Fetch the user and change his password, then email him

YN
if (!Sverbose) {
return "Done! SuserEmail has received an email with his new password.\n";
lelse(
return "Done! New password for user SuserEmail is ' $newPassword’ . It has also been email

We have created resetpasswordAction () than retrieves current request and checks if it’s really coming from
the console (as a precaution). In this example we do not want our action to be invocable from a web page. Because
we have not defined any http route pointing to it, it should never be possible. However in the future, we might define
a wildcard route or a 3rd party module might erroneously route some requests to our action - that is why we want to
make sure that the request is always coming from a Console environment.

All console arguments supplied by the user are accessible via $request->getParam () method. Flags will be
represented by a booleans, where t rue means a flag has been used and false otherwise.

115.2. Handling console requests 439

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.3.5

When our action has finished working it returns a simple st ring that will be shown to the user in console window.

See also:

There are different ways you can interact with console from a controller. It has been covered in more detail in the

following chapter: Console-aware action controllers

115.3 Adding console usage info

It is a common practice for console application to display usage information when run for the first time (without any
arguments). This is also handled by Zend\Console together with MVC.

Usage info in ZF2 console applications is provided by loaded modules. In case no console route matches console
arguments, Zend\Console will query all loaded modules and ask for their console usage info.

Let’s modify our Application\Module to provide usage info:

<?php

namespace Application;

use
use
use
use

Zend\ModuleManager\Feature\AutoloaderProviderInterface;
Zend\ModuleManager\Feature\ConfigProviderInterface;
Zend\ModuleManager\Feature\ConsoleUsageProviderInterface;
Zend\Console\Adapter\AdapterInterface as Console;

class Module implements
AutoloaderProviderInterface,
ConfigProviderInterface,
ConsoleUsageProviderInterface

public
{
//

public
{
/S

public
{

function getConfig()

[...]

// <= our module implement this feature and provides console usa

function getAutoloaderConfig()

[...]

function getConsoleUsage (Console Sconsole)

return array (
// Describe available commands

"user resetpassword

[-—verbose|-v] EMAIL’' => ’'Reset password for a user’,

// Describe expected parameters

array (
array (

’

’

EMAIL',
--verbose|-v’,

"Email of the user for a password reset’),
" (optional) turn on verbose mode’),

Each module that implements ConsoleUsageProviderInterface will be queried for console usage info. On
route mismatch, all info from all modules will be concatenated, formatted to console width and shown to the user.

Note:

The order of usage info displayed in the console is the order modules load. If you want your application to

440

Chapter 115. Introduction to Zend\Console

Zend Framework 2 Documentation, Release 2.3.5

display important usage info first, change the order your modules are loaded.

See also:

Modules can also provide an application banner (title). To learn more about the format expected from
getConsoleUsage () and about application banners, please read this chapter: Console-aware modules

115.3. Adding console usage info 441

Zend Framework 2 Documentation, Release 2.3.5

442 Chapter 115. Introduction to Zend\Console

CHAPTER 116

Console routes and routing

Zend Framework 2 has native MVC integration with console, which means that command line arguments are read
and used to determine the appropriate action controller and action method that will handle the request. Actions can
perform any number of task prior to returning a result, that will be displayed to the user in his console window.

There are several routes you can use with Console. All of them are defined in Zend\Mvc\Router\Console\«
classes.

See also:

Routes are used to handle real commands, but they are not used to create help messages (usage information). When a
zf2 application is run in console for the first time (without arguments) it can display usage information that is provided
by modules. To learn more about providing usage information, please read this chapter: Console-aware modules.

116.1 Router configuration

All Console Routes are automatically read from the following configuration location:

// This can sit inside of modules/Application/config/module.config.php or any other module’s config.
array (
"router’ => array (
"routes’ => array (
// HTTP routes are here

)y

"console’ => array (
"router’ => array (
"routes’ => array (
// Console routes go here

)y
)

Console Routes will only be processed when the application is run inside console (terminal) window. They have no
effect in web (http) request and will be ignored. It is possible to define only HTTP routes (only web application) or
only Console routes (which means we want a console-only application which will refuse to run in a browser).

A single route can be described with the following array:

// inside config.console.router.routes:

/S el

443

Zend Framework 2 Documentation, Release 2.3.5

'my-first-route’ => array(

"type’ => ’simple’, // <- simple route is created by default, we can skip that

"options’ => array (
"route’ => ' foo bar’,
"defaults’ => array (
"controller’ => ’'Application\Controller\Index’,
"action’ => ’"password’

)

We have created a simple console route with aname my—-first—-route. It expects two parameters: foo and bar.
If user puts these in a console, Application\Controller\IndexController: :passwordAction ()
action will be invoked.

See also:

You can read more about how ZF2 routing works in this chapter.

116.2 Basic route

This is the default route type for console. It recognizes the following types of parameters:
e Literal parameters (i.e. create object (external|internal))
e Literal flags (i.e. ——verbose --direct [-d] [-a])
* Positional value parameters (i.e. create <modelName> [<destination>])

e Value flags (i.e. ——name=NAME [--method=METHOD])

116.2.1 Literal parameters

These parameters are expected to appear on the command line exactly the way they are spelled in the route. For
example:

"show-users’ => array (
"options’ => array (
"route’ => ’show users’,
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => ' show’

)

This route will only match for the following command line

> zf show users

It expects mandatory literal parameters show users. It will not match if there are any more params, or if one of
the words is missing. The order of words is also enforced.

We can also provide optional literal parameters, for example:

" show-users’ => array(
"options’ => array (
"route’ => ’show [all] users’,

444 Chapter 116. Console routes and routing

Zend Framework 2 Documentation, Release 2.3.5

"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => "show’

Now this route will match for both of these commands:

> zf show users
> zf show all users

We can also provide parameter alternative:

"show-users’ => array (
"options’ => array(
"route’ => ’'show [all|deleted|locked|admin] users’,
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => ' show’

This route will match both without and with second parameter being one of the words, which enables us to capture
commands such:

> zf show users

> zf show locked users
> zf show admin users
etc.

Note: Whitespaces in route definition are ignored. If you separate your parameters with more spaces, or separate
alternatives and pipe characters with spaces, it won’t matter for the parser. The above route definition is equivalent to:

show [all | deleted | locked | admin] users

116.2.2 Literal flags

Flags are a common concept for console tools. You can define any number of optional and mandatory flags. The order
of flags is ignored. The can be defined in any order and the user can provide them in any other order.

Let’s create a route with optional long flags

"check-users’ => array (
"options’ => array(
"route’ => ’"check users [--verbose] [-—-fast] [--thorough]’,
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => ' check’

This route will match for commands like:

> zf check users
> zf check users —--fast

116.2. Basic route 445

Zend Framework 2 Documentation, Release 2.3.5

> zf check users —--verbose —-—-thorough
> zf check users —--thorough —--fast

We can also define one or more mandatory long flags and group them as an alternative:

"check-users’ => array (
"options’ => array (
"route’ => ’check users (-—-suspicious|--expired) [--verbose] [--fast]
"defaults’ => array(
"controller’ => ’'Application\Controller\Users’,
"action’ => ’check’

This route will only match if we provide either ——suspicious or ——expired flag, i.e.:

> zf check users —--expired
> zf check users —--expired --fast
> zf check users —--verbose --thorough --suspicious

We can also use short flags in our routes and group them with long flags for convenience, for example:

"check-users’ => array (
"options’ => array (
"route’ => ’check users [--verbose|-v] [-—-fast|-f] [-—-thorough|-t]’,
"defaults’ => array(
"controller’ => ’Application\Controller\Users’,
"action’ => ’check’

Now we can use short versions of our flags:

> zf check users -f
> zf check users -v —-thorough
> zf check users -t -f -v

116.2.3 Positional value parameters

Value parameters capture any text-based input and come in two forms - positional and flags.

[-—-thorough]’,

Positional value parameters are expected to appear in an exact position on the command line. Let’s take a look at

the following route definition:

"delete-user’ => array (
"options’ => array (
"route’ => ’delete user <userEmail>’,
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => ’'delete’

This route will match for commands like:

446 Chapter 116. Console routes and routing

Zend Framework 2 Documentation, Release 2.3.5

> zf delete user john@acme.org
> zf delete user bettylacme.org

We can access the email value by calling $this->getRequest () —>getParam ('’ userEmail’) inside of our
controller action (you can read more about accessing values here)

We can also define optional positional value parameters by adding square brackets:

"delete-user’ => array (
"options’ => array (
"route’ => ’'delete user [<userEmail>]"',
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => ’'delete’

In this case, userEmail parameter will not be required for the route to match. If it is not provided, userEmail
parameter will not be set.

We can define any number of positional value parameters, for example:

"create-user’ => array (
"options’ => array (
"route’ => ’create user <firstName> <lastName> <email> <position>’,
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => 'create’

This allows us to capture commands such as:

> zf create user Johnny Bravo john@acme.org Entertainer

Note: Command line arguments on all systems must be properly escaped, otherwise they will not be passed to our
application correctly. For example, to create a user with two names and a complex position description, we could write

something like this:

> zf create user "Johnan Tom" Bravo john@acme.org "Head of the Entertainment Department”

116.2.4 Value flag parameters

Positional value parameters are only matched if they appear in the exact order as described in the route. If we do not
want to enforce the order of parameters, we can define value flags.

Value flags can be defined and matched in any order. They can digest text-based values, for example:

"find-user’ => array (
"options’ => array(
"route’ => ’find user [--id=] [-—firstName=] [-—-lastName=] [-—-email=] [--position=] ',
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => /" find’

116.2. Basic route 447

Zend Framework 2 Documentation, Release 2.3.5

This route will match for any of the following routes:

> zf find user

> zf find user --id 29110

> zf find user —--id=29110

> zf find user --firstName=Johny --lastName=Bravo

> zf find user --lastName Bravo —--firstName Johny

> zf find user —--position=Executive —--firstName=Bob
>

zf find user --position "Head of the Entertainment Department"

Note: The order of flags is irrelevant for the parser.

Note: The parser understands values that are provided after equal symbol (=) and separated by a space. Values
without whitespaces can be provided after = symbol or after a space. Values with one more whitespaces however,

must be properly quoted and written after a space.

In previous example, all value flags are optional. It is also possible to define mandatory value flags:

"rename—-user’ => array (
"options’ => array(
"route’ => ’'rename user --id= [-—-firstName=] [--lastName=]',
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => 'rename’

The ——1d parameter is required for this route to match. The following commands will work with this route:

> zf rename user --id 123
> zf rename user —--id 123 —--firstName Jonathan
> zf rename user —--id=123 --lastName=Bravo

116.3 Catchall route

This special route will catch all console requests, regardless of the parameters provided.

"default-route’ => array(

"type’ => ’catchall’,
"options’ => array (
"route’ = ',

"defaults’ => array (
"controller’ => ’'Application\Controller\Index’,
"action’ => ’consoledefault’

Note: This route type is rarely used. You could use it as a last console route, to display usage information. Before
you do so, read about the preferred way of displaying console usage information. It is the recommended way and will

guarantee proper inter-operation with other modules in your application.

448 Chapter 116. Console routes and routing

Zend Framework 2 Documentation, Release 2.3.5

116.4 Console routes cheat-sheet

Param type \ Example route definition \ Explanation
Literal params
Literal foo bar “foo0” followed by “bar”
Literal alternative foo (bar|baz) “foo” followed by “bar” or “baz”
Literal, optional foo [bar] “f00”, optional “bar”
Literal, optional foo [bar|baz] “fo0”, optional “bar” or “baz”
alternative
Flags
Flag long foo —-bar “foo” as first parameter, “—bar” flag before or after
Flag long, optional foo [--bar] “foo” as first parameter, optional “~bar” flag before or
after
Flag long, optional, foo [--bar|--baz] “f00” as first parameter, optional “~bar” or “~baz”,
alternative before or after
Flag short foo -b “foo” as first parameter, “-b” flag before or after
Flag short, optional foo [-b] “foo” as first parameter, optional “-b” flag before or after
Flag short, optional, foo [-b|-2z] “foo” as first parameter, optional “-b” or “-z”, before or
alternative after
Flag long/short foo [--bar|-b] “fo0” as first parameter, optional “~bar” or “-b” before
alternative or after
Value parameters
Value positional param | foo <bar> “foo” followed by any text (stored as “bar” param)
Value positional param, | foo [<bar>] “f00”, optionally followed by any text (stored as “bar”
optional param)
Value Flag foo —-bar= “f00” as first parameter, “—bar” with a value, before or
after
Value Flag, optional foo [--bar=] “foo” as first parameter, optionally “~bar” with a value,
before or after
Parameter groups
Literal params group foo “f00” followed by “bar” or “baz” (stored as “myParam”
(bar|baz) :myParam param)
Literal optional params | foo “foo” followed by optional “bar” or “baz” (stored as
group [bar|baz] :myParam “myParam” param)
Long flags group foo “foo”, “bar” or “baz” flag before or after (stored as
(-—bar|--baz) :myParamfmyParam” param)
Long optional flags foo “f00”, optional “bar” or “baz” flag before or after (as
group [--bar|--baz] :myPararimyParam” param)
Short flags group foo “fo0”, “-b” or “-z” flag before or after (stored as
(-b|-2z) :myParam “myParam” param)
Short optional flags foo “foo”, optional “-b” or “-z” flag before or after (stored
group [-b|-z]:myParam as “myParam” param)

116.4. Console routes cheat-sheet 449

Zend Framework 2 Documentation, Release 2.3.5

450 Chapter 116. Console routes and routing

CHAPTER 117

Console-aware modules

Zend Framework 2 has native MVC integration with console. The integration also works with modules loaded with
Module Manager.

ZF2 ships with RouteNotFoundStrategy which is responsible of displaying usage information inside Console,
in case the user has not provided any arguments, or arguments could not be understood. The strategy currently supports
two types of information: application banners and usage information.

117.1 Application banner

To run the console ZF 2 component, go to your public folder, and type php index.php. By default, it will simply output
the current ZF 2 version, like this:

800 {1 public — bash — 106x20 2

iMac-de-Michael:public michael$ php index.php
Zend Framework 2.l1.5dev application
Usage:

Reascn for failure: Invalid arguments or no arguments provided
iMac-de-Michael :public michael$ []

Our Application module (and any other module) can provide application banner. In order to do so, our Module class
has to implement Zend\ModuleManager\Feature\ConsoleBannerProviderInterface. Let’s do this
now.

// modules/Application/Module.php
<?php
namespace Application;

451

Zend Framework 2 Documentation, Release 2.3.5

use Zend\ModuleManager\Feature\ConsoleBannerProviderInterface;
use Zend\Console\Adapter\AdapterInterface as Console;

class Module implements ConsoleBannerProviderInterface

{
J ok k
*# This method is defined in ConsoleBannerProviderInterface
*/
public function getConsoleBanner (Console Sconsole)

{
return ’'MyModule 0.0.1";

As you can see, the application banner should be a single line string that returns the module’s name and (if available)
its current version.

If several modules define their own banner, they are all shown one after the other (they will be joined together in the
order modules are loaded). This way, it makes it very easy to spot which modules provide console commands.

After running our application, we’ll see our newly created banner.

8 00 (] public — bash — 106x20 e
iMac=de=Michael:public michael$ php index.php
MyModule 0.0.1

Reason for failure: Invalid arguments or no arguments provided
iMac-de-Michael:public michael$ []

Let’s create and load second module that provides a banner.

<?php
// config/application.config.php
return array (
"modules’ => array (
"Application’,
'User’, // < load user module in modules/User

)y

User module will add-on a short info about itself:

// modules/User/Module.php
<?php
namespace User;

452 Chapter 117. Console-aware modules

Zend Framework 2 Documentation, Release 2.3.5

use Zend\ModuleManager\Feature\ConsoleBannerProviderInterface;
use Zend\Console\Adapter\AdapterInterface as Console;

class Module implements ConsoleBannerProviderInterface
{
J ok k
* This method is defined in ConsoleBannerProviderInterface
*/
public function getConsoleBanner (Console S$Sconsole) {
return "User Module 0.0.1";

Because User module is loaded after Application module, the result will look like this:

8 00 (] public — bash — 106x20 e
iMac-de-Michael:public michael$ php index.php
MyModule 0.0.1

UserModule 0.0.1

Reason for failure: Invalid arguments or no arguments provided
iMac-de-Michael:public michael$ [J

Note: Application banner is displayed as-is - no trimming or other adjustments will be performed on the text. As you
can see, banners are also automatically colorized as blue.

117.2 Basic usage

In order to display usage information, our Module class has to implement
Zend\ModuleManager\Feature\ConsoleUsageProviderInterface. Let’'s modify our example
and add new method:

// modules/Application/Module.php
<?php
namespace Application;

use Zend\ModuleManager\Feature\ConsoleBannerProviderInterface;
use Zend\ModuleManager\Feature\ConsoleUsageProviderInterface;

use Zend\Console\Adapter\AdapterInterface as Console;

class Module implements ConsoleBannerProviderInterface, ConsoleUsageProviderInterface

117.2. Basic usage 453

20

21

22

23

24

Zend Framework 2 Documentation, Release 2.3.5

public function getConsoleBanner (Console S$Sconsole){ // ... }
J ok k
* This method is defined in ConsoleUsageProviderInterface
*/

public function getConsoleUsage (Console Sconsole)
{
return array (
"show stats’ => ’Show application statistics’,
"run cron’ => ’'Run automated jobs’,
" (enable|disable) debug’ => ’"Enable or disable debug mode for the application.’

)i

This will display the following information:

8 00 [public — bash — 91x30 e
iMac-de-Michael:public michael$ php index.php
MyModule 0.0.1

UserModule 0.0.1

Application
index.php show stats Show application statisties
index.php run cron Run automated jobs

index.php (enable|disable) debug Enable or disable debug mode
for the application.

Reason for failure: Invalid arguments or no arguments provided
iMac-de-Michael:public michaels []

Similar to application banner multiple modules can provide usage information, which will be joined together and
displayed to the user. The order in which usage information is displayed is the order in which modules are loaded.

As you can see, Console component also prepended each module’s usage by the module’s name. This helps to visually
separate each modules (this can be useful when you have multiple modules that provide commands). By default, the
component colorizes those in red.

Note: Usage info provided in modules does not connect with console routing. You can describe console usage in any

454 Chapter 117. Console-aware modules

Zend Framework 2 Documentation, Release 2.3.5

form you prefer and it does not affect how MVC handles console commands. In order to handle real console requests
you need to define 1 or more console routes.

117.2.1 Free-form text

In order to output free-form text as usage information, getConsoleUsage () can return a string, or an array of
strings, for example:

public function getConsoleUsage (Console Sconsole)

{

return ’'User module expects exactly one argument - user name. It will display information for th:
}
8 00 [public — bash — 91x30 e
iMac-de-Michael:public michael$ php index.php
MyModule 0.0.1

UserModule 0.0.1

Application
index.php show stats Show application statistics
index.php run cron Run automated jcbs

index.php (enable|disable) debug Enable or disable debug mode
for the application.

User module expects exactly one argument - user name. It will display information for this
user.

Reason for failure: Invalid arguments or no arguments provided
iMac-de-Michael :public michaels [J

Note: The text provided is displayed as-is - no trimming or other adjustments will be performed. If you’d like to fit
your usage information inside console window, you could check its width with $console->getWidth ().

117.2.2 List of commands

If getConsoleUsage () returns and associative array, it will be automatically aligned in 2 columns. The first
column will be prepended with script name (the entry point for the application). This is useful to display different
ways of running the application.

117.2. Basic usage 455

Zend Framework 2 Documentation, Release 2.3.5

public function getConsoleUsage (Console Sconsole)

{

return array (

"delete user <userEmail>’ => ’'Delete user with email <userEmail>’,
"disable user <userEmail>’ => ’'Disable user with email <userEmail>’,
’1list [all|disabled] users’ => ’"Show a list of users’,
"find user [-—-email=] [--name=]’ => ’'Attempt to find a user by email or name’,
)i
}
8 00 (. public — bash — 121x32 o
iMac-de-Michael:public michael$ php index.php
MyModule 0.0.1

UserModule 0.0.1

Application
index.php show stats Show application statisties
index.php run cron Run automated jobs

index.php (enable|disable) debug Enable or disable debug mode for the application.

User
index.php delete user <userEmail> Delete user with email <userEmail>
index.php disable user <userEmail> Disable user with email <userEmail>
index.php list [all|disabled] users Show a list of users
index.php find user [--email=] [--name=] Attempt to find a user by email or name

Reason for failure: Invalid arguments or no arguments provided
iMac-de-Michael:public michael$ ||

Note: Commands and their descriptions will be aligned in two columns, that fit inside Console window. If the window
is resized, some texts might be wrapped but all content will be aligned accordingly. If you don’t like this behavior,

you can always return free-form text that will not be transformed in any way.

117.2.3 List of params and flags

Returning an array of arrays from getConsoleUsage () will produce a listing of parameters. This is useful for
explaining flags, switches, possible values and other information. The output will be aligned in multiple columns for
readability.

Below is an example:

public function getConsoleUsage (Console Sconsole)

{

return array (

array(’'<userEmail>’ , "email of the user’),

array('——-verbose’ , "Turn on verbose mode’),

array(’'—--quick’ , "Perform a "quick" operation’),
array('-v’ , Same as —--verbose’),

456 Chapter 117. Console-aware modules

Zend Framework 2 Documentation, Release 2.3.5

array('-w’ , 'Wide output’)

8 00 ﬁ Bublic — bash — 119x32

iMac-de-Michael:public michael$ php index.php

MyModule 0.0.1
UserModule 0.0.1

Application

index.php show stats Show application statistics
index.php run cron Run automated jobs

index.php (enable|disable) debug Enable or disable debug mode for the application.

email of the user
=-=-verbose Turn on verbose mode
--quick Perform a "quick" operation
-V Same as =--verbose
-W Wide output

Reason for failure: Invalid argquments or no arguments provided
iMac-de-Michael:public michaels [I

Using this method, we can display more than 2 columns of information, for example:

public function getConsoleUsage (Console Sconsole)
{
return array (
array(’<userEmail>’ , ’‘user email’

array(’'——verbose’ , 'verbose mode’
array(’'—-—quick’ , ""quick" operation’
array('-v’ , Same as --verbose’
array('-w’ , '"wide output’

"Full email address of the user to find.’),
"Display additional information during processii
Do not check integrity, just make changes and
"Display additional information during processii
"When listing users, use the whole available sc:

117.2. Basic usage

457

Zend Framework 2 Documentation, Release 2.3.5

e oo {1 public — bash — 11932 "

iMac-de-Michael:public michael$ php index.php

MyModule 0.0.1
UserModule 0.0.1

Application
index.php show stats Show application statistics
index.php run cron Run automated jobs

index.php (enable|disable) debug Enable or disable debug mode for the application.

User
<userEmail> user email Full email address of the user to find.
==verbose verbose mode Display additional information during processing
-=guick "guick" operation Do not check integrity, just make changes and finish
-v Same as --verbose Display additional informatien during processing
-W wide output When listing users, use the whole available screen width

Reason for failure: Invalid arguments or no arguments provided
iMac-de-Michael:public michael$ [I

Note: All info will be aligned in one or more columns that fit inside Console window. If the window is resized, some
texts might be wrapped but all content will be aligned accordingly. In case the number of columns changes (i.e. the

array() contains different number of elements) a new table will be started, with new alignment and different column
widths.

If you don’t like this behavior, you can always return free-form text that will not be transformed in any way.

117.2.4 Mixing styles

You can use mix together all of the above styles to provide comprehensive usage information, for example:

public function getConsoleUsage (Console Sconsole)

{

return array (
"Finding and listing users’,

’list [all|disabled] users [-w]’ => ’"Show a list of users’,

"find user [—-—email=] [—-—name=]’ => ’Attempt to find a user by email or name’,

array (’ [all|disabled]’, "Display all users or only disabled accounts’),

array (' ——email=EMAIL’, "Email of the user to find’),

array (" ——name=NAME', "Full name of the user to find.’),

array (' -w’, "Wide output - When listing users use the whole available screen

"Manipulation of user database:’,

"delete user <userEmail> [--verbose|-v] [-—-quick]’ => ’'Delete user with email <userEmail>’,
"disable user <userEmail> [--verbose|-v]’ => ’Disable user with email <userEmail>’
array(’'<userEmail>’ , ‘user email’ , "Full email address of the user to change.’),

array(' ——verbose’ , "verbose mode’ , "Display additional information during processii

458

Chapter 117. Console-aware modules

20

21

22

23

Zend Framework 2 Documentation, Release 2.3.5

array(’'—-—-quick’

array('—-v’ , ' Same as

""quick" operation’ ,
--verbose’ ,

Do not check integrity,

iMac-de-Michael:public michael$ [I

117.3 Best practices

8 0o (] public — bash — 119x32 v
index.php show stats Show application statistics
index.php run cron Run automated jobs
index.php (enable|disable) debug Enable or disable debug mode for the application.
user
Finding and listing users
index.php list [all|disabled] users [-w] Show a list of users
index.php find user [--email=] [--name=] Attempt to find a user by email or name
[all|disabled] Display all users or only disabled accounts
--email=EMAIL Email of the user to find
==name=NAME Full name of the user to find.
-w Wide output - When listing users use the whole available screen width
Manipulation of user database:
index.php delete user <userEmail> [--verbose|-v] [--guick] Delete user with email
<userEmail>
index.php disable user <userEmail> [--verbose|-v] Disable user with email
<userEmail>
<userEmail> user email Full email address of the user to change.
--verbose verbose mode Display additional information during processing
--guick "guick" operation Do not check integrity, just make changes and finish
-V Same as --verbose Display additional information during processing

Reason for failure: Invalid arguments or no arguments provided

As a reminder, here are the best practices when providing usage for your commands:

1. Your getConsoleBanner should only return a one-line string containing the module’s name and its version

(if available).

2. Your getConsoleUsage should not return module’s name; it is prepended automatically for you by Console

component.

117.3. Best practices

459

just make changes and
"Display additional information during processii

Zend Framework 2 Documentation, Release 2.3.5

460 Chapter 117. Console-aware modules

CHAPTER 118

Console-aware action controllers

Zend Framework 2 has built-in MVC integration with the console. When the user runs an application in a console
window, the request will be routed. By matching command line arguments against console routes we have defined in
our application, the MVC will invoke a controller and an action.

In this chapter we will learn how ZF2 Controllers can interact with and return output to console window.
See also:

In order for a controller to be invoked, at least one route must point to it. To learn about creating console routes, please
read the chapter Console routes and routing

118.1 Handling console requests

Console requests are very similar to HTTP requests. In fact, they implement a common interface and are created at the
same time in the MVC workflow. Console routes match against command line arguments and provide a defaults
array, which holds the controller and action keys. These correspond with controller aliases in the Service-
Manager, and method names in the controller class. This is analogous to the way HTTP requests are handled in
ZF2.

See also:
To learn about defining and creating controllers, please read the chapter Routing and controllers
In this example we’ll use the following simple route:

// FILE: modules/Application/config/module.config.php
array (
"router’ => array (
"routes’ => array (
// HTTP routes are here

) 4

"console’ => array (

"router’ => array (
"routes’ => array (
"list-users’ => array(
"options’ => array(
"route’ => ’'show [all|disabled|deleted] :mode users [--verbose|-v]’,
"defaults’ => array (
"controller’ => ’'Application\Controller\Index’,
"action’ => ’show-users’

461

20

21

22

23

24

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Zend Framework 2 Documentation, Release 2.3.5

)y

This route will match commands such as:

> php public/index.php show users
> php public/index.php show all users
> php public/index.php show disabled users

This route points to the method Application\Controller\IndexController: :showUsersAction ().
Let’s add it to our controller.

<?php
namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class IndexController extends AbstractActionController
{
public function indexAction()

{

return new ViewModel (); // display standard index page

public function showUsersAction()

{
Srequest = S$this->getRequest ();

// Check verbose flag
Sverbose = Srequest->getParam(’verbose’) || S$request->getParam(’'v’);

// Check mode
Smode = Srequest—->getParam(’'mode’, ’'all’); // defaults to ’“all’

Susers = array/();
switch (Smode) {
case ’'disabled’:
Susers = S$this->getServicelLocator ()->get ('users’)->fetchDisabledUsers();
break;
case ’'deleted’:
Susers = S$this->getServicelLocator()->get ('users’)->fetchDeletedUsers|();
break;
case "all’:
default:
Susers = Sthis->getServiceLocator ()->get ('users’)->fetchAllUsers();
break;

We fetch the console request, read parameters, and load users from our (theoretical) users service. In order to make
this method functional, we’ll have to display the result in the console window.

462 Chapter 118. Console-aware action controllers

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Zend Framework 2 Documentation, Release 2.3.5

118.2 Sending output to console

The simplest way for our controller to display data in the console window is to return a string. Let’s modify our
example to output a list of users:

public function showUsersAction ()

{

Srequest = Sthis—->getRequest ();

// Check verbose flag
Sverbose = Srequest->getParam(’verbose’) || Srequest->getParam(’'v’);

// Check mode
Smode = S$Srequest->getParam(’'mode’, 'all’); // defaults to ’“all’

Susers = array/();
switch (Smode) {
case ’'disabled’:
Susers = Sthis->getServicelocator ()->get ('users’)->fetchDisabledUsers();

break;

case ’'deleted’:
Susers = S$this->getServicelocator ()->get ('users’)->fetchDeletedUsers|();
break;

case 'all’:

default:
Susers = S$this->getServicelLocator ()->get ('users’)->fetchAllUsers();
break;

if (count (Susers) == 0) {
// Show an error message in the console
return "There are no users in the database\n";

foreach (Susers as S$Sus
Sresult .= Suser->name . ' '’ . Suser—->email . "\n";

return S$result; // show it in the console

On line 27, we are checking if the users service found any users - otherwise we are returning an error message that
will be immediately displayed and the application will end.

If there are 1 or more users, we will loop through them with and prepare a listing. It is then returned from the action
and displayed in the console window.

118.3 Are we in a console?

Sometimes we might need to check if our method is being called from a console or from a web request. This is useful
to block certain methods from running in the console or to change their behavior based on that context.

Here is an example of how to check if we are dealing with a console request:

118.2. Sending output to console 463

20

21

22

23

24

25

26

27

Zend Framework 2 Documentation, Release 2.3.5

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

use Zend\Console\Request as ConsoleRequest;

use RuntimeException;

class IndexController extends AbstractActionController
{
public function showUsersAction()

{

Srequest = S$this->getRequest () ;

// Make sure that we are running in a console and the user has not tricked our
// application into running this action from a public web server.
if (!Srequest instanceof ConsoleRequest) {

throw new RuntimeException(’You can only use this action from a console!’);

Note: You do not need to secure all your controllers and methods from console requests. Controller actions will
only be invoked when at least one console route matches it. HTTP and Console routes are separated and defined in

different places in module (and application) configuration.

There is no way to invoke a console action unless there is at least one route pointing to it. Similarly, there is no way
for an HTTP action to be invoked unless there is at least one HTTP route that points to it.

The example below shows how a single controller method can handle both Console and HTTP requests:

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

use Zend\Console\Request as ConsoleRequest;

use Zend\Http\Request as HttpRequest;

use RuntimeException;

class IndexController extends AbstractActionController

{

public function showUsersAction()

{

Srequest = S$this->getRequest () ;
Susers = array/();
// ... fetch users from database

if (Srequest instanceof HttpRequest) {
// display a web page with users 1list
return new ViewModel (Sresult);

} elseif (Sregquest instanceof ConsoleRequest) {

// ... prepare console output and return it
return Sresult;
} else {
throw new RuntimeException (’Cannot handle request of type ’ . get_class(Srequest));

464 Chapter 118. Console-aware action controllers

28

Zend Framework 2 Documentation, Release 2.3.5

118.4 Reading values from console parameters

There are several types of parameters recognized by the Console component - all of them are described in the console
routing chapter. Here, we’ll focus on how to retrieve values from distinct parameters and flags.

118.4.1 Positional parameters

After a route matches, we can access both literal parameters and value parameters from within the Srequest
container.

Assuming we have the following route:

// inside of config.console.router.routes:
"show-users’ => array (
"options’ => array(
"route’ => ’show (all|deleted]|locked|admin) [<groupName>]"
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => ’showusers’

If this route matches, our action can now query parameters in the following way:

// an action inside Application\Controller\UsersController:
public function showUsersAction()

{

Srequest = S$this->getRequest();

// We can access named value parameters directly by their name:
SshowUsersFromGroup = S$request->getParam(’ groupName’) ;

// Literal parameters can be checked with isset () against their exact spelling
if (isset ($request->getParam(’all’))) |
// show all users
} elseif (isset ($request->getParam(’deleted’))) {
// show deleted users
}
//

In case of parameter alternatives, it is a good idea to assign a name to the group, which simplifies the branching in
our action controllers. We can do this with the following syntax:

// inside of config.console.router.routes:
" show-users’ => array(
"options’ => array (
"route’ => ’show (all|deleted]|locked|admin) :userTypeFilter [<groupName>]’
"defaults’ => array(
"controller’ => ’'Application\Controller\Users’,
"action’ => ’showusers’

118.4. Reading values from console parameters 465

Zend Framework 2 Documentation, Release 2.3.5

Now we can use a the group name userTypeFilter to check which option has been selected by the user:

public function showUsersAction ()

{
Srequest = S$this->getRequest();

// We can access named value parameters directly by their name:
SshowUsersFromGroup = S$request->getParam(’ groupName’) ;

// The selected option from second parameter is now stored under ’userTypeFilter’
SuserTypeFilter = Srequest->getParam(’userTypeFilter’);

switch (SuserTypeFilter) {

case 'all’:

// all users
case ’'deleted’:

// deleted users
case ’'locked’

//

//

118.4.2 Flags

Flags are directly accessible by name. Value-capturing flags will contain string values, as provided by the user. Non-
value flags will be equal to t rue.

Given the following route:

" find-user’ => array (
"options’ => array(
"route’ => ’find user [-—-fast] [—--verbose] [--id=] [-—-firstName=] [--lastName=]
"defaults’ => array (
"controller’ => ’'Application\Controller\Users’,
"action’ => ’'find’,

We can easily retrieve values in the following fashion:

public function findAction()

{
Srequest = S$this->getRequest () ;

// We can retrieve values from value flags using their name

SsearchId = S$request->getParam(’id’, null); // default null

Srequest—->getParam(’ firstName’, null)

Srequest->getParam(’ lastName’, null);
()

I

SsearchFirstName
SsearchLastName
SsearchEmail = Srequest->getParam(’email’, null

’

// Standard flags that have been matched will be equal to TRUE
SisFast = (bool) Srequest->getParam(’ fast’, false); // default false
SisVerbose = (bool) Srequest->getParam(’verbose’, false);

466 Chapter 118. Console-aware action controllers

[-—email=

Zend Framework 2 Documentation, Release 2.3.5

if (SisFast) {
// perform a fast query
} else {

// perform standard query

In case of flag alternatives, we have to check each alternative separately:

// Assuming our route now reads:

// ’route’ => ’/find user [--fast|-f] [--verbose/-Vv] ... 7,
//

public function findAction()

{

Srequest = S$this->getRequest () ;

// Check both alternatives
SisFast = Srequest->getParam(’ fast’,b false) | | Srequest—->getParam
$ [

SisVerbose = $request->getParam(’verbose’, false)

/7

rfr,false);
Srequest->getParam(’v’, false);

118.4. Reading values from console parameters

467

Zend Framework 2 Documentation, Release 2.3.5

468 Chapter 118. Console-aware action controllers

CHAPTER 119

Console adapters

Zend Framework 2 provides console abstraction layer, which works around various bugs and limitations in operating
systems. It handles displaying of colored text, retrieving console window size, charset and provides basic line drawing
capabilities.

See also:

Console Adapters can be used for a low-level access to the console. If you plan on building functional console
applications you do not normally need to use adapters. Make sure to read about console MVC integration first,
because it provides a convenient way for running modular console applications without directly writing to or reading
from console window.

119.1 Retrieving console adapter

If you are using MVC controllers you can obtain Console adapter instance using Service Manager.

namespace Application;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\Console\Adapter\AdapterInterface as Console;
use Zend\Console\Exception\RuntimeException;

class ConsoleController extends AbstractActionController
{
public function testAction ()
{
Sconsole = $this->getServicelLocator ()->get (' console’);
if (!Sconsole instanceof Console) {
throw new RuntimeException (’Cannot obtain console adapter. Are we running in a console?’

If you are using Zend\Console without MVC, we can get adapter using the following code:

use Zend\Console\Console;
use Zend\Console\Exception\RuntimeException as ConsoleException;

try {
Sconsole = Console::getInstance();
} catch (ConsoleException Se) {

469

Zend Framework 2 Documentation, Release 2.3.5

// Could not get console adapter — most likely we are not running inside a console window.

Note: For practical and security reasons, Console: :getInstance () will always throw an exception if you
attempt to get console instance in a non-console environment (i.e. when running on a HTTP server). You can override

this behavior by manually instantiating one of Zend\Console\Adapter\x classes.

119.2 Using console adapter

119.2.1 Window size and title

$console->getWidth() (int) Get real console window width in characters.
$console->getHeight() (inr) Get real console window height in characters.
$console->getSize() (array) Get an array ($width, Sheight) with current console window dimensions.

$console->getTitle() (string) Get console window title.

Note: For UTF-8 enabled consoles (terminals) dimensions represent the number of multibyte characters (real char-
acters).

Note: On consoles with virtual buffers (i.e. MS Windows Command Prompt) width and height represent visible
(real) size, without scrolling the window. For example - if the window scrolling width is 120 chars, but it’s real, visible

width is 80 chars, getWidth () will return 80.

119.2.2 Character set

$console->isUtf8() (boolean) Is the console UTF-8 compatible (can display unicode strings) ?

$console->getCharset() (Zend\Console\CharseN\Charsetlnterface) This method will return one of
Console\Charset* classes that represent the readable charset that can be used for line-drawing. It
is automatically detected by the adapter.

119.2.3 Writing to console

$console->write(string $text, $color = null, $bgColor = null) Write a S$text to the console, optionally us-
ing foreground $color and background S$bgColor. Color value is one of the constants in
Zend\Console\ColorInterface.

$console->writeLine(string $text, $color = null, $bgColor = null) Write a single line of $Stext to the console.
This method will output a newline character at the end of text moving console cursor to next line.

$console->writeAt(string $text, int $x, int $y, $color = null, $bgColor = null) Write Stext at the specified $x
and $y coordinates of console window. Top left corner of the screen has coordinates of $x = 1; $x = 1.
To retrieve far-right and bottom coordinates, use getWidth () and getHeight () methods.

470 Chapter 119. Console adapters

Zend Framework 2 Documentation, Release 2.3.5

119.2.4 Reading from console

$console->readChar(string $mask = null) (string) Read a single character from console. Optional (string)
$mask can be provided to force entering only a selected set of characters. For example, to read a single digit,
we can use the following syntax: $digit = $console->readChar (/0123456789');

$console->readLine(int $maxLength = 2048) (string) Read a single line of input from console. Optional (int)
$maxLength can be used to limit the length of data that will be read. The line will be returned without ending
newline character.

119.2.5 Miscellaneous

$console->hideCursor() Hide blinking cursor from console.
$console->showCursor() Show blinking cursor in console.
$console->clear() Clear the screen.

$console->clearLine() Clear the line that the cursor currently sits at.

119.2. Using console adapter 471

Zend Framework 2 Documentation, Release 2.3.5

472 Chapter 119. Console adapters

CHAPTER 120

Console prompts

In addition to console abstraction layer Zend Framework 2 provides numerous convenience classes for interacting
with the user in console environment. This chapter describes available Zend\Console\Prompt classes and their

example usage.
All prompts can be instantiated as objects and provide show () method.

use Zend\Console\Prompt;

= new Prompt\Confirm(’Are you sure you want to continue?’);
= ->show () ;
if () A
// the user chose to continue

}

There is also a shorter method of displaying prompts, using static prompt () method:

use Zend\Console\Prompt;
= Prompt\Confirm::prompt (' Are you sure you want to continue?’);
if () |

// the user chose to continue

}

Both of above examples will display something like this:

C: 2app>zf
A

re you sure you want to cmntinue?_

See also:

Make sure to read about console MVC integration first, because it provides a convenient way for running modular

console applications without directly writing to or reading from console window.

473

Zend Framework 2 Documentation, Release 2.3.5

120.1 Confirm

This prompt is best used for a yes / no type of choices.

’

Confirm(string , string = 'y’, string = 'n’)

$text (string) The text to show with the prompt

$yesChar (string) The char that corresponds with YES choice. Defaults to y.
$noChar (string) The char that corresponds with NO choice. Defaults to n.
Example usage:

use Zend\Console\Prompt\Confirm;

if (Confirm::prompt (’Is this the correct answer? [y/nl]l’, 'y’, 'n’)) {
->write ("You chose YES");

} else {
—>write ("You chose NO");

}

C:nzf2app>zf

Is this the correct answer? [v/m]v
You chose YES

C:\zf2app>

120.2 Line

This prompt asks for a line of text input.

Line (
string = ’'"Please enter value’,
bool = false,
bool = 2048

)

$text (string) The text to show with the prompt

$allowEmpty (boolean) Can this prompt be skipped, by pressing [ENTER] ? (default fo false)
$maxLength (integer) Maximum length of the input. Anything above this limit will be truncated.
Example usage:

use Zend\Console\Prompt\Line;

= Line: :prompt (
"What is your name?’,
false,
100

474 Chapter 120. Console prompts

Zend Framework 2 Documentation, Release 2.3.5

->write ("Good day to you 'y

2apprzf
is your name? Adam

ood day to you Adam!
aflapprg

120.3 Char

This prompt reads a single keystroke and optionally validates it against a list o allowed characters.

Char (
string = 'Please hit a key’,
string = "abc’,
bool = true,
bool = false,
bool = true

)

$text (string) The text to show with the prompt
$allowedChars (string) A list of allowed keys that can be pressed.
$ignoreCase (boolean) Ignore the case of chars pressed (default to true)
$allowEmpty (boolean) Can this prompt be skipped, by pressing [ENTER] ? (default fo false)
$echo (boolean) Should the selection be displayed on the screen ?
Example usage:
use Zend\Console\Prompt\Char;
= Char: :prompt (

"What is the correct answer? [a,b,c,d,e]’,

"abcde’,

true,

false,
true

if == 'b’) {

->write (’Correct. This it the right answer’);
} else {

->write ('Wrong ! Try again.’);

120.3. Char 475

Zend Framework 2 Documentation, Release 2.3.5

shzf2apprzf
What is the correct answer? [a,b,c,d,e]b

Correct. This it the right answer
hEifZapprg

120.4 Select

This prompt displays a number of choices and asks the user to pick one.

Select (
string = ’Please select one option’,
array = array (),
bool = false,
bool = false

)

$text (string) The text to show with the prompt

$options (array) An associative array with keys strokes (chars) and their displayed values.
$allowEmpty (boolean) Can this prompt be skipped, by pressing [ENTER] ? (default fo false)
$echo (boolean) Should the selection be displayed on the screen ?

Example usage:

= array (
"a’ => ’"Apples’,
"o’ => ’'Oranges’,
"p’ => ’Pears’,
"b’” => ’Bananas’,
"n’” => ’'"none of the above...’

= Select: :prompt (
"Which fru